IoT
ABS and HD Hyundai Heavy Industries (HHI) signed a memorandum of understanding that opens the door for joint development projects to develop international naval ships. Types of naval ship designs With the goal of achieving approval in principle, ABS will apply its rigorous goal-based and prescriptive requirements to three different types of naval ship designs from HHI: HDA-24000: Auxiliary Logistic Support Ship HDF-3200: Frigate HDP-2200: Offshore Patrol Vessel International naval vess...
ABS and HD Hyundai Mipo (HMD) have signed a joint development project (JDP) for digital manufacturing-based automation equipment for shipyards. The JDP establishes a collaborative framework focused on leveraging smart technology within HD Hyundai Mipo’s shipyard operations that include artificial intelligence, communication technologies, automation and robotics. ABS will utilise its Guide for Smart Technologies for Shipyards to help HMD identify opportunities for process improvement, foc...
Indian Register of Shipping (IRS), a pioneering international ship classification society and member of the International Association of Classification Societies (IACS), is proud to announce the opening of its new office in the Kingdom of Saudi Arabia. This strategic expansion highlights IRS’s commitment to supporting the Kingdom’s rapidly growing maritime and oil & gas sectors. IRS full suite of services With the placement of the Dammam, IRS will offer its full suite of servi...
Traditionally, bulk cargo unloading has faced challenges around operational efficiency, safety risks, environmental impacts, and high operational costs. Rough discharges, equipment wear, vibration damage, and limited weather operating windows have all constrained vessel utilisation and performance. Moreover, older unloading systems are energy-intensive and labour-dependent, increasing both costs and environmental footprint. Cargo unloading systems Many bulk cargo unloading systems depend on...
Technology group - Wärtsilä has introduced its NextDF technology for a third engine, the Wärtsilä 46TS-DF dual-fuel engine. While operating on liquefied natural gas (LNG), the Wärtsilä 46TS-DF engine with NextDF feature reduces methane emissions to less than 1.4 percent of fuel use across all load points, achieving as low as 1.1 percent in a wide load range. This is nearly three times lower than the default methane slip factor of 3.1 percent, specified in the FuelE...
VIKING Life-Saving Equipment has launched the first Crew Transfer Vessel (CTV) immersion suit in the world designed for women working in offshore wind energy, using guidance on diversity and inclusivity from industry majors - Ørsted, Siemens and Vestas. The VIKING YouSafe™ Cyclone suit joins a growing portfolio of VIKING PPE whose fit and features reflect the safety needs of female seafarers, pilots and technicians in the marine and offshore industries. Equity and inclusivity stra...
News
Inmarsat Maritime, a Viasat company, has signed an agreement with Sallaum Lines, a pioneering Roll-on/Roll-off (RoRo) cargo shipping company, to upgrade to Inmarsat Maritime’s NexusWave fully managed bonded connectivity service, making it an early adopter in region. As Sallaum Lines expands its global presence, NexusWave will provide secure, ultra-fast connectivity with unlimited data, complemented by Inmarsat’s Care Premium programme for 24/7 support and maintenance. IoT sensors and collaborative tools Reflecting a proactive digitalisation strategy, Sallaum Lines is adopting modern technologies, such as IoT sensors and collaborative tools to enhance decision-making and operational efficiency across its fleet. Inmarsat’s NexusWave will deliver the reliability, high speeds, and low latency that Sallaum increasingly relies on to facilitate data collection, analysis, and advanced monitoring across its 14-vessel RoRo fleet, including six newbuilds. NexusWave through network bonding Sallaum’s crew will have access to contact services and academic tools nearly anywhere in the world Sallaum Lines is committed to creating a healthy and happy working environment on board its vessels by ensuring crew members can stay connected with their families and friends during rest and off-duty hours. The company places high value on education and development and plans to deploy a fleetwide learning and skills development platform. Thanks to the unlimited, high-speed connectivity provided by NexusWave through network bonding, Sallaum’s crew will have access to communication services and educational tools virtually anywhere in the world – even in connectivity hotspots. Remote infrastructure and onboard portfolio Mr. Puneet Arora, Head of Technical, Sallaum Lines, commented: "NexusWave will provide us with fast and reliable connectivity without the worry of outages, latency, or interruptions." He adds, "This new partnership will also enable us to enhance our remote infrastructure and expand our onboard portfolio with solutions that meet both operational needs and crew welfare requirements. We are proud to be an early adopter of NexusWave." Inmarsat Maritime’s capabilities Dennis Winterswijk, Regional Director, EMEA, Inmarsat Maritime, said: "Deep understanding of Inmarsat Maritime’s capabilities, and trust in our reliability, were key factors in Sallaum Lines’ decision to select NexusWave." He adds, "Its decision to adopt NexusWave highlights the company’s commitment to enhancing operational efficiency and reliability, as well as its position as a forward-thinking, technology-driven company."
On April 17, 2025, the Office of the US Trade Representative (“USTR”) published a notice of action (the “USTR Notice”) implementing its port fee proposal, first announced on February 21, 2025. The rules differ substantially from the February proposal. The calculation of the fees has changed to a net tonnage-based fee (or for certain vessels, based on containers discharged or Car Equivalent Units). LNG transportation and vehicle carriers Specialised rules apply to LNG transportation and vehicle carriers, including fees and restrictions Several points have been clarified. Specialised rules apply to LNG transportation and vehicle carriers, including fees and restrictions on non-Chinese vessels. The port fees are slated to go into effect beginning October 14, 2025, with rates increasing after such time on a phased schedule. Summary of port fees The USTR Notice implements the port fee mechanism by means of four non-cumulative “Annexes.” Annex I – Fee on Chinese vessel operators and vessel owners Beginning October 14, 2025, a fee will be imposed on the entry of a Chinese-owned or operated vessel into a US port at a rate of $50 per net ton. The rate will be increased beginning in April 2026, plateauing at $140 per net ton in April 2028. “Owners” and “operators” are defined by reference to US Customs and Border Protection (“CBP”) Form 1300. The instructions to the CBP Form state that the “operator” is defined as the party listed on the Certificate of Financial Responsibility (Water Pollution) unless other verifiable charter or lease arrangement indicates otherwise. The form does not include guidance as to who is the “owner.” “China” includes the People’s Republic of China, Hong Kong and Macau, although not Taiwan. A Chinese owner or operator generally includes, inter alia, an owner or operator that is a citizen of or headquartered in China, as well as an entity that is owned or controlled by a Chinese citizen. Annex II – Fee on Chinese-built vessels Beginning October 14, 2025, a fee will be imposed on the entry of a Chinese-built vessel into a US port at a rate of $18 per net ton. The rate will be increased beginning in April 2026, plateauing at $33 per net ton in April 2028. In the case of container vessels, an alternate rate will be imposed (if higher than the tonnage rate) calculated on the basis of containers discharged: starting at $120 per container, and plateauing at $250 per container. There are several exceptions to the imposition of the fees, including for vessels arriving to the US empty or in ballast, certain small vessels, certain US-owned vessels, vessels entering the continental US from a voyage of less than 2,000 nautical miles, and certain specialised vessels. Annex III – Fee on foreign-built vehicle carriers Beginning October 14, 2025, a fee will be imposed on the entry of a non-US-built vehicle carrier vessel into a US port at a rate of $150 per Car Equivalent Unit (CEU). Annex IV – Restriction on LNG exports Beginning April 17, 2028, at least 1% of all LNG intended for exportation by vessel in a calendar year must be exported by a US-built vessel. This percentage increases annually, plateauing at 15% in April 2047. Operation and common provisions of Annexes The fees and restrictions imposed by the annexes are not cumulative. The order of operation of the Annexes is 1) Annex IV (LNG exports); 2) Annex III (non-US car carriers); 3) Annex I (Chinese owners/operators); and 4) Annex II (Chinese-built vessels). For example, a Chinese-built vessel that is subject to fees because it has a Chinese owner or operator will not also be subject to fees on Chinese-built vessels. The fees on Chinese-built vessels and foreign-built vehicle carriers, and restrictions on LNG exports, will be suspended for up to three years if the vessel owner orders and takes delivery of a US-built vessel of equivalent or greater capacity. This suspension does not apply to Chinese-owned or leased vessels. The fees on Chinese-owned or operated vessels and Chinese-built vessels are imposed up to five times per vessel per year. This limitation does not apply to the fees on foreign-built vehicle carriers. The fees on Chinese-owned or operated vessels and Chinese-built vessels are assessed for each string of US voyages (so that a voyage that involves deliveries at multiple US ports of call in a row would trigger only a single fee). This rule does not apply to the fees on foreign-built vehicle carriers. Notable changes to the proposed rules The USTR differs substantially from the rules that had been proposed in February. Among the relevant changes are: The fees are now calculated based on tonnage (or containers delivered/vehicle carrying capacity) rather than per vessel. The fees on Chinese owners and operators are also generally higher than the fees on Chinese-built vessels. There are multiple exceptions to the fees on Chinese-built vessels (e.g., small vessels and vessels arriving in the US empty), but the exceptions do not apply to the fees on Chinese owners and operators. The exception from the fees on small Chinese-built vessels applies to vessels with a capacity of equal to or less than: 4,000 Twenty-Foot Equivalent Units (relevant for container ships), 55,000 deadweight tons, or an individual bulk capacity of 80,000 deadweight tons. The reference to “individual bulk capacity” appears to mean that dry bulk carriers with capacity of up to 80,000 deadweight tons are exempt, whereas for other vessels the maximum tonnage capacity appears to be 55,000 deadweight tons. There are no fees based on the fleet makeup of the owner or operator; the focus is on the vessel itself and its owner/operator. The fees on newbuilding orders from Chinese shipyards have been eliminated. The fees on vehicle carriers apply to any non-US-built vessel, whether or not there is a Chinese nexus. The requirement that certain exports be carried on US-built vessels now applies only to LNG, and only starting in 2028. LNG carriers are exempt from the other fees. Questions and uncertainties While the USTR Notice clarifies some uncertainties from the February proposal, significant questions remain. Among the questions that may be relevant are: When is there a Chinese “operator”? – Rather than defining the term “operator,” the USTR Notice cross-references CBP Form 1300, which refers, in the instructions for which party should be identified as the operator in the form, to the operator listed on the Certificate of Financial Responsibility (Water Pollution) (“COFR”) under the Oil Pollution Act of 1990 (OPA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The COFR regulations generally define an “operator” as “a responsible party who conducts, or has responsibility for, the operation of a vessel.” However, where there are multiple operators, the parties can generally agree to designate any such responsible party as the operator listed on CBP Form 1300. This may be a factor in deciding which party to designate where there are multiple potential “operators” (e.g., owner, charterer, technical manager) some of which are Chinese and some of which are not. Who is the “owner” in a Chinese lease financing? – CBP Form 1300 does not include any definition of “owner.” In a Chinese lease financing, a special purpose vehicle (often organised outside China) owned or controlled by a Chinese leasing company will be the nominal owner of the vessel, and will lease (by means of a bareboat charter) the vessel to the lessee. However, the lessee is considered the beneficial owner of the vessel, in that the lessee typically retains the economic burdens and benefits of the vessel, and the vessel is recorded on the lessee’s balance sheet for accounting purposes. It seems clear that the action would not extend fees to a vessel that is not otherwise Chinese-related, but financed by means of a traditional vessel mortgage-backed loan from a Chinese bank, despite the fact that a loan transaction is economically similar to a finance lease. How does the exception for US-owned vessels operate? – The USTR Notice includes an exception from the fees on Chinese-built vessels for US-owned vessels, where the US entity owning the vessel is controlled by US persons and is at least 75 percent beneficially owned by US persons. There is no definition of “US persons” or what constitutes “beneficial ownership.” The reference may indicate that the US citizenship 75% ownership requirement for vessels operating in the coastwise trade of the United States (known as the Jones Act) would be used. It is unclear whether “US persons” in the USTR Notice mean the same thing as “US citizens” under the Jones Act, or how ownership by a publicly traded company, private equity fund, or other diffuse ownership structure would be analysed under the USTR Notice. Does the exception for vessels arriving to the US empty or in ballast apply to vessels that do not deliver cargo to the US? – The exception from the fees for Chinese-built vessels arriving to the US empty or in ballast suggests that the fees are intended to apply only for vessels delivering cargo to the US, not a vessel solely delivering cargo from the US. If a vessel calls in a US port with non-US cargo, and it wishes to load additional cargo without any discharge in the US, it appears the exception would not apply by its literal terms, although this may not have been intended. Does the fee limit of five US calls per year apply per calendar year or per one-year period? – The USTR Notice indicates that the fees will start in October 2025, so if the limit is imposed per calendar year, it may be of limited utility in 2025. Next steps The USTR Notice has a set timeframe, and the fee structure is scheduled to be implemented beginning October 14 unless the action is amended, delayed or successfully challenged. However, the USTR has scheduled another hearing for May 19. Those wishing to testify must sign up by May 8. Following this hearing, we may see further amendments and/or clarifications to the fees.
Hanwha Ocean has received the ABS SMART (SHM) Tier 3 approval in principle (AIP) for its advanced hull monitoring system. The system from Hanwha Ocean is designed to estimate structural damage to ships and offshore assets during operation, which can support decision-making for the optimal maintenance timing to maintain safety. ABS SMART(SHM) Tier 3 ABS SMART(SHM) Tier 3 recognises systems that employ hull sensors combined with additional algorithms to generate structural health insights at critical locations, even at locations where no sensors are present. The AIP is one of the first fruits of the Offshore Technology Collaboration Agreement signed by ABS and Hanwha Ocean in 2024. The agreement promotes technology development in three areas: digitalisation and artificial intelligence, cybersecurity operations, and sustainability. Adoption of smart technologies in the maritime sectors AIP is one of the first fruits of the Offshore Technology Collaboration Agreement signed by ABS in 2024 Patrick Ryan, ABS Senior Vice President and Chief Technology Officer, said, "ABS celebrates this achievement with Hanwha Ocean, a milestone in our collective pursuit of safety at sea." He adds, "As a pioneer in supporting the adoption of smart technologies in the maritime and offshore sectors, ABS recognises the transformative capabilities of these systems – advancing health and condition awareness, operational optimisation and, eventually, classification supported by condition-based programs." Hull monitoring system from Hanwha Ocean "Recently, shipowners have been including digital technologies as part of their contractual requirements, and classification societies are also in the process of refining regulations related to digitalisation. Based on this approval, we will proactively respond to the growing demand for smart and digital technologies in the shipping industry," said Young Chang Shon, Chief Technology Officer of Hanwha Ocean. The hull monitoring system from Hanwha Ocean is being developed in accordance with the ABS Guide for Smart Functions for Marine Vessels and Offshore Units.
Swiss marine power company - WinGD is to integrate hybrid power and energy systems on four 113,600 DWT, wind-assisted tankers under construction for Union Maritime Limited (UML). The agreement marks the first time that WinGD’s X-EL Integrated Energy solution will be deployed with wind-assisted propulsion systems, ensuring optimal use of power generated by the main engine and the sails onboard. WinGD X-EL energy management system The vessels are also the first on which WinGD will apply its integrated energy system to third-party main engines The vessels will be built by Xiamen Shipbuilding Industry Co., with WinGD configuring the hybrid power system, installing a shaft generator for the main engines, coupled with the WinGD X-EL energy management system. The system will optimise the power and electrical distribution between the engines, shaft generator in a power-take out mode and sails, allowing for efficient energy use in extended ranges and all operating conditions. The vessels are also the first on which WinGD will apply its integrated energy system to third-party main engines. Integration and control of hybrid energy systems WinGD Head of Integrated Energy Solutions, Stefan Goranov, said: "To maximise the energy savings from wind-assisted propulsion, operators need an energy management system that can optimise engine and electrical power in response to the available wind power." Stefan Goranov adds, "Our expertise in system integration and control of two-stroke-based hybrid energy systems enable us to optimise the efficiency and reliability of operations of a vessel with wind-assisted propulsion. UML’s new vessels will be a showcase for the efficiencies that can be achieved through holistic energy management based around the main engine." WinGD’s X-EL solution Union Maritime Limited Head of Technical, Bhuvnesh Dogra, said: "Our ambition is to build the most energy-efficient vessels on the market, and we believe wind-assisted propulsion is a key element in achieving that. So too is effective energy management across the vessel." Bhuvnesh Dogra adds, "WinGD’s X-EL solution, managing overall energy use while using the fuel-efficient main engine to generate auxiliary electrical power, will be an important contributor to the efficiency of these vessels." WinGD X-EL Integrated Energy Solutions WinGD X-EL Integrated Energy Solutions have been used by vessels in service since 2022 WinGD X-EL Integrated Energy Solutions have been used by vessels in service since 2022. By using the power margin of the main engine, rather than the auxiliary engines traditionally used to generate electricity onboard, the solution delivers more fuel-efficient energy production and greater flexibility in how power is managed across vessels. WinGD’s unique expertise in two-stroke engines means that the company can optimise electricity generation potential, while its state-of-the-art digital capabilities support both the configuration of the initial energy system – including its control strategies - and its subsequent management and in-service optimisation. Integrated energy systems for any vessel WinGD X-EL Energy Management can tailor integrated energy systems for any vessel powered by any make of engine. Configurations can include energy storage such as batteries and fuel cells, as well as other energy resources, including wind-assisted propulsion.
Technology group - Wärtsilä will upgrade the Wärtsilä RT-flex main engines on two bulk carrier vessels owned by Turkey-based Ulusoy Sealines. The planned engine retrofits and upgrades will extend the vessels’ operational life and improve both performance and fuel efficiency, thereby significantly reducing emissions. The orders were booked by Wärtsilä in Q4 2024 and Q1 2025. Initial delivery of vessels The aim of the upgrade is to align the engines’ performance with the latest operational profile Current regulations – such as Carbon Intensity Indicator (CII) – are requiring the majority of the merchant fleet to become more energy efficient. Therefore, the aim of the upgrade is to align the engines’ performance with the latest operational profile of the two vessels, both of which have undergone substantial changes since the initial delivery of the vessels to the market in 2011. Integration of Wärtsilä Part Load Optimisation With the integration of Wärtsilä Part Load Optimisation (WPLO), Intelligence Combustion Control (ICC), and Fuel Actuated Sackless Technology (FAST), a CII improvement of 5% is anticipated, equating to a 2-year extension of the CII rating. Additionally, annual fuel savings of nearly 250 tons are estimated, resulting in potential cost savings of more than 150,000 US Dollars per year, and a reduction in CO2 emissions of approximately 780 tons per year per vessel. Environmental and operational efficiency Wärtsilä has closely cooperated with Ulusoy for several years and this project is a continuation “We continuously strive to operate our fleet in the most environmentally friendly and efficient manner possible. These engine upgrades are, therefore, very important to us and we are excited to be able to provide added value to our customers by combining existing assets with these state-of-the-art engine retrofits,” comments Capt. A.Akin OZCOREKCI/DPA - OPR Manager, Ulusoy Sealines. Wärtsilä has closely cooperated with Ulusoy for several years and this project is a continuation of the two companies' joint efforts to maintain environmental and operational efficiency and comply with all relevant regulations. Delivery of two vessels “These engine upgrades will involve the integration of various solutions, both long-standing and newly developed, which are meticulously fine-tuned to achieve the highest operational improvements and maximum savings tailored to the vessel’s specific operational profile,” says Peter Knaapen, Director, 2-Stroke & Other OEM Services – Wärtsilä Marine. The delivery of the required parts and equipment for the two vessels – ULUSOY 11 and ULUSOY 12 – is scheduled to take place during the first half of 2025.
Fincantieri, a pioneer in complex shipbuilding, and Accenture, one of the world’s pioneering professional services companies, have signed an agreement to establish Fincantieri Ingenium, a new joint venture. The company will be owned 70% by Fincantieri NexTech – a subsidiary of the Fincantieri Group – and 30% by Accenture. The initiative stems from a Memorandum of Understanding signed in July 2024 and combines Fincantieri’s technological expertise in the naval sector with Accenture’s advanced digital capabilities and digital engineering and manufacturing expertise. The project is subject to customary regulatory clearances. Fincantieri Group’s Industrial Plan Fincantieri Ingenium has been created to accelerate digital transformation across the cruise industry Fincantieri Ingenium has been created to accelerate digital transformation across the cruise, defence, and port infrastructure sectors. It will play a key role in executing the strategy outlined in Fincantieri Group’s Industrial Plan. The goal is to enhance the offering of digital services and systems based on recent advances in technologies such as artificial intelligence by optimising the entire value chain through data utilisation and process transformation. Accenture’s extensive experience in digital platforms The joint venture will integrate Accenture’s extensive experience in digital platforms, AI, connectivity and IoT, cybersecurity, and service design with Fincantieri’s deep technological know-how in the naval and defense industries. This powerful combination will enable the development of new technological capabilities and skills, while also attracting and training new talent. Next-generation ships and existing fleets The first ship equipped with Navis Sapiens is expected to enter service by the end of 2025 Among the first strategic initiatives of the new company is the development of Navis Sapiens, a digital ecosystem designed for next-generation ships and the upgrade of existing fleets. The project spans three key dimensions: the creation of a portfolio of application services to optimise operational efficiency and lifecycle management for ships and onshore infrastructure; the development of a digital platform enabling these applications and advanced AI-driven functionalities, with a strong focus on cybersecurity; and a marketplace to facilitate the exchange of solutions - including those from third parties - to deliver high value-added services and enable new business models across the maritime ecosystem. The first ship equipped with Navis Sapiens is expected to enter service by the end of 2025. Ships and onshore ecosystems In synergy with Navis Sapiens, the joint venture also plans to enhance real-time data exchange and connectivity between ships and onshore ecosystems - including ports and shipyards - through a sea-to-shore interoperability solution to increase cross-functional process efficiency. This project will help improve the competitiveness of Italian ports by optimising performance across the entire maritime and land-based value chain. National maritime ecosystem The plans will be designed to reduce environmental impact via data-driven energy optimisation All initiatives will be promoted with sustainability as a core pillar. The systems will be designed to reduce environmental impact through data-driven energy optimisation, supporting shipowners in reducing fuel consumption. The initiatives already underway, as well as those to come, will generate significant value for Fincantieri, the national maritime ecosystem, and the country as a whole, with a positive impact on a global scale. Fincantieri technological innovation Pierroberto Folgiero, CEO and General Manager of Fincantieri, said: "With Fincantieri Ingenium, we strengthen our leadership position in technological innovation applied to shipbuilding and the naval engineering industry. This joint venture represents a strategic step forward in accelerating the digitalisation of the sector, leveraging artificial intelligence and the most advanced technologies." "Thanks to the synergy with Accenture, we will develop cutting-edge solutions that will make our ships and infrastructures increasingly connected, efficient and sustainable, consolidating Fincantieri's role as a pioneer in the sector." Step forward in maritime innovation Teodoro Lio, MU Lead for ICEG and CEO of Accenture Italy, commented: “We are excited about this joint venture with Fincantieri, which marks a significant step forward in maritime innovation and is a tangible example of collaboration between two organisations committed to transforming the market and creating new value." "With Fincantieri Ingenium, we are combining our respective strengths to shape new operating models that will transform maritime operations through innovative technologies.”


Expert commentary
President Donald Trump has already made plenty of headlines since taking up his second term in the White House, including with the announcement of numerous new tariffs on imports. The 47th United States President issued three executive orders on February 1st 2025, just days after his inauguration, which directed the US to impose an additional 25 percent ad valorem rate of duty on imports from Canada and Mexico, as well as ten percent on imports from China. How Trump’s 2nd term as US President Cleveland Containers has analysed the early reactions to these announcements Excluding Canadian energy resources exports – which instead will be hit with a ten percent tariff – the tariffs have been applied to all imports which are either entered for consumption or withdrawn from warehouse for consumption on or after 12:01 am Eastern Standard Time on February 4th 2025. President Trump also told reporters on February 8th 2025 that a 25 percent tariff on all American steel and aluminium imports was coming into effect across the US during February. Leading 40ft shipping container supplier Cleveland Containers has analysed the early reactions to these announcements and how President Trump’s second term as US President could affect the world’s shipping industry, especially when looking back at his first term. Reaction to President Trump’s tariff announcements Mexico, Canada and China were all quick to react to President Trump’s announcement of tariffs on imports. Mexican President Claudia Sheinbaum said her country would vow for resilience against the measures, while a senior government official in Canada said that their country would challenge the decision by taking legal action through the necessary international bodies. China has also said it would be challenging the tariffs at the World Trade Organisation. According to the country’s finance ministry, as reported on by Geopolitical Intelligence Services, Beijing were moving to place levies of 15 percent on American coal and liquefied natural gas, as well as levies of ten percent on crude oil, certain vehicles and farm equipment. Beginning of making America rich again When it comes to the announcement of the tariff on all American steel and aluminium imports, President Trump told reporters in the Oval Office: "This is a big deal, the beginning of making America rich again. Our nation requires steel and aluminium to be made in America, not in foreign lands.” Francois-Phillippe Champagne, the Minister of Innovation in Canada, stated that the tariffs were "totally unjustified" though, before adding in a post on X: "Canadian steel and aluminium support key industries in the US, from defence, shipbuilding and auto. We will continue to stand up for Canada, our workers, and our industries." How might President Trump’s 2nd term affect shipping sector? Bruce Chan, an analyst in the Transportation and Future Mobility sectors at wealth management and investment banking Just ahead of President Trump taking office for the second time, J. Bruce Chan, an analyst in the Transportation and Future Mobility sectors at wealth management and investment banking firm Stifel, believed that the shipping industry was prepared for the new tariffs. However, he also stated to the Morning Star: "President Trump's Administration promises to usher in a new trade and tariff regime. As such, it's difficult to assess the ultimate impact to the freight transportation industry. Prima facie, we believe tariffs are a drag on freight demand, effectively resulting in higher costs for shippers that are generally passed on to end consumers over time." Attention to the American sanction announcements Mr. Chan went on to note that those involved in shipping containers across continents should be paying particular attention to the American sanction announcements. He commented: "Because almost all trans-Pacific trade moves over the ocean, we believe ocean container shipping will see the largest direct impact. But for shippers and retailers, there is no cheaper way to move goods than over the ocean, so there are few modal alternatives if production remains in Asia. We see the most risk for maritime shipping, with containers and dry bulk being more acute, with more insulation for oil and gas tankers." Shipping news and intelligence service Various sources have looked back on President Trump’s first term to get an idea of what could be expected As President Trump has just become his second term as US president and the American sanctions have only just been announced, it will take time to see what the true impact will be. However, various sources have looked back on President Trump’s first term to get an idea of what could be expected. For example, shipping news and intelligence service Lloyd’s List pointed out that tariffs introduced when President Trump was last in the White House had a noticeable effect on both spot container freight rates and import timing. Cargoes were pulled forward in the second half of 2018 by importers as they looked to beat tariff deadlines, which resulted in higher spot rates temporarily before affecting rates in 2019 because of inventory overhang. Could repeat results be seen across 2025 and 2026? Long-life inputs and goods from the tariff countries Jason Miller, a freight economist and professor of supply chain management at Michigan State University, certainly seemed to think so. Speaking to Lloyd’s List before President Trump’s 2024 presidential victory when the tariffs were only part of campaign proposals at that point, he said: “We will see front-loading like we have never seen before in 2025. There would be a massive pull-forward of demand as everybody rushes to bring in long-life inputs and goods from tariff countries, especially China.” Shipping demand and routes Shipping demand and routes could be affected due to trade uncertainty too Meanwhile, international shipping and forwarding agents Supreme Freight Services reported that increased tariffs may cause disruption to shipping volumes and global supply chains, if trade policies introduced by President Trump during his first term are anything to go by. Shipping demand and routes could be affected due to trade uncertainty too, though the publication also acknowledged that increased investment in ports and inland waterways across the US could improve efficiency for domestic and international trade alike. New American sanctions Cleveland Containers has looked to reassure its customers that any disruption caused by the new American sanctions will be minimised at the firm. Hayley Hedley, the company’s Commercial Director, stated: “Recent history certainly suggests that the new tariffs being introduced by President Trump will have various knock-on effects across the shipping industry." “Fortunately, Cleveland Containers has a continuous supply of shipping containers entering the UK. We work with several agents to ship from various locations, as well as having good stock on the ground, so are confident in our ability to provide for our customers.”
Maritime communications came a long way before they could deliver the first Global Maritime Distress and Safety System (GMDSS). Still, it is fair to say that their forward march has only accelerated in the two-and-a-half decades since. Today, shipping companies rely on satellite connectivity to protect their vessels and people and enable the digitalisation, decarbonisation, and crew-welfare initiatives on which its successes rely. Low-Earth orbit (LEO) networks Against this background, the new generation of low-Earth orbit (LEO) networks has entered the maritime market to great fanfare and expectation from ship owners, and their excitement is justified: LEO satellite coverage has the potential to span the globe, providing exceptional reliability and speed even during long voyages in the most remote locations. This facilitates real-time communication and efficient coordination between vessels and onshore personnel, ultimately supporting more profitable and sustainable fleet operations. Level of connectivity Moral obligations and regulatory requirements aside, providing high-quality crew internet LEO’s introduction into the maritime sphere has been equally well received by seafarers, who stand to benefit from a level of connectivity that keeps them better connected to family and friends than ever before, and to richer entertainment options at sea. Moral obligations and regulatory requirements aside, providing high-quality crew internet represents a wise investment from a competitive standpoint, enhancing as it does an organisation’s ability to attract and retain the brightest talent. Another advantage to seafarers and their employers, LEO connectivity offers stable onboard access to non-leisure services including mental-health support, telemedicine, and online learning resources, helping to keep a crew happy, healthy, and up to speed with the evolving requirements of their job. Limitations For all the benefits of LEO networks, it is important to acknowledge their limitations. For instance, LEO’s promise of delivering worldwide coverage remains to be realised, with certain countries yet to authorise its use in their territorial waters. This means that, depending on the trading route, a ship may encounter multiple LEO-coverage blackspots during its voyage. Susceptible to interference Regardless of the network type being used, vessels still need to compress and throttle data Like many satellite technologies, LEO networks are also susceptible to interference from atmospheric conditions that can disrupt communications, while network congestion at hotspots and drop-out at satellite handover may present additional connectivity challenges. Regardless of the network type being used, vessels still need to compress and throttle data on certain occasions, such as while in port, but LEO networks currently cap utilisation and therefore limit connectivity and availability further. Crew and commercial use In addition, maritime organisations should consider whether their LEO system is for both crew and commercial use. For a vessel deploying LEO connectivity to cover crew and business communications simultaneously, even a terabyte of data is unlikely to go far. Divided among a crew of 25, it equates to 40 gigabytes per person, enough for 13 hours of HD streaming with nothing remaining for commercial requirements. The solution Maritime software including critical communications-based services will need to be compatible with LEO To ensure reliable and consistent connectivity, support enhanced GMDSS communications, and meet the bandwidth needs of all stakeholders, a vessel will require multiple satellite provisions. This means that maritime software including critical communications-based services will need to be compatible with both LEO and more traditional, low-bandwidth networks and be able to switch between connections automatically to ensure uninterrupted service. GTMailPlus GTMaritime’s GTMailPlus, for example, is compatible with all major network types, regardless of bandwidth. Developed with optimisation in the maritime environment in mind, it provides secure and efficient data transfers irrespective of the service or combination of services a shipowner or manager uses. If disruptions do occur, GTMailPlus resumes data transmission from the point of interruption. Risk of a cybersecurity breach There have already been several reported cases of ship owners falling victim to significant cyber incidents As crew freedoms on the Internet increase and more onboard devices are connected to the network, the risk of breaches to cybersecurity is also rising dramatically: effectively, the vessel becomes a larger attack surface. There have already been several reported cases of ship owners falling victim to significant cyber incidents having adopted LEO systems without taking the necessary security precautions. Robust, intelligent, and scalable network Given that ships transfer diverse types of data that often involve critical and sensitive information, the consequences of any breach of vessel operations, safety, and privacy can be severe. Here too, the GTMaritime portfolio is continuously evolving to ensure robust, intelligent, and scalable network protection for owners. AI-based next-gen anti-virus technology In addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach In the latest partnership with CrowdStrike, GTMaritime’s cyber-security offering combines AI-based next-generation anti-virus technology with end-point detection and response capabilities. This, in addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach to vessel security. Conclusion LEO networks undoubtedly present a considerable opportunity for the maritime industry and have the power to transform connectivity at sea. However, there are several factors to consider before adopting an LEO system and regardless of advances in technology, optimised solutions for critical communications, security, and data transfer remain essential.
Aiming to establish minimum requirements for the cyber-resilience of newbuild vessels and their connected systems, IACS unified requirements (URs) E26 and E27 provide a new benchmark for shipping’s response to its growing exposure to cyber-attacks. Officially in force from 1 July 2024 and broadly welcomed by industry, the new URs represent another step forward in strengthening Maritime's resilience to the evolving cyber threat. However, according to a thought-provoking discussion recently hosted by Edwin Lampert, Executive Editor of Riviera in partnership with Inmarsat Maritime (a Viasat company), shipping companies must still conduct comprehensive risk assessments and implement appropriate mitigation measures. Vessel’s cyber security They ensure all stakeholders are responsible for the vessel’s cyber security Kostas Grivas, Information Security Officer, Angelicoussis Group told the ‘IACS URs E26 & E27: Bridging the gap between regulation and implementation’ session that the URs bring “obvious benefits” such as eliminating “scattered requirements”. They provide “common and crystal-clear ground for auditing and control purposes”, and establish “a solid description of the minimum technical, procedural, and other criteria that govern a vessel’s cyber resilience,” he said. Finally, they ensure “all stakeholders are responsible for the vessel’s cyber security”. Makiko Tani, Deputy Manager, Cyber Security at classification society ClassNK, also acknowledged that the new requirements will “contribute to the visibility of ever-digitalising shipboard networks and their assets”, however, as there is no one-size-fits all cybersecurity solution to all, she continued, “additional controls beyond those specified in the requirements may be necessary, depending on the vessel’s connectivity”. Digital transformation strategy To properly address the cyber risks that a specific vessel is exposed to, she said, “shipowners must conduct a thorough cyber-risk assessment. This relies on a ‘C-level commitment’ to establishing a cyber-security programme that facilitates compliance with URs E26 and E27 and any other future industry requirements while supporting the organisation’s digital transformation strategy”. The importance of looking beyond the IACS URs was also emphasised by Laurie Eve, Chief of Staff, Inmarsat Maritime, who proposed three key areas where companies should “focus and invest not only to meet new requirements but also to go beyond compliance and build good cyber resilience”. Quality management system and standards The firm should focus on training and grasping, managing user rights, investing in a regime system “The first key area, ‘people and culture’, addresses the notion that people are the weakest link in cyber security. According to a 2023 report from the United States Coast Guard as well as findings from Inmarsat’s security operations centres, phishing is the most common initial access vector in cyber-attacks. Investing in people, therefore, should be an absolute no brainer”, commented Eve. Specifically, he continued, a company should focus on training and awareness, managing user privileges, investing in a quality management system and standards such as ISO 27001, assessing suppliers’ risk-management practices, and embedding cyber-security in the organisation’s continuous improvement culture. Risk-management approach The third and final key area according to Eve is an ‘incident response plan’ (IRP). The second key area is ‘network-connected systems and services’. Given the number of attack surfaces on board a vessel and the ever-growing volumes of data moving between systems, many companies lack the time and resources to address all possible weaknesses. The solution, Eve said, is a risk-management approach in which the organisation assesses the risks, sets its risk appetite, and implements security measures according to the costs it is willing and able to bear. The third and final key area according to Eve is an ‘incident response plan’ (IRP). It’s prudent to assume that at some point there will be failures and a breach, an IRP comprises a robust set of contingencies to keep the cost of business disruption to a minimum. It requires investment in backup and data systems as well as regular staff training. “Having a plan is good; training, rehearsing, and improving the plan is better,” explained Eve. Cyber-security requirements While these recommendations apply to all ship owners, Eve acknowledged that there are differences from small to large operators in terms of the budget and internal capability invested in cyber resilience. “Inmarsat’s Fleet Secure offers a ‘one-stop shop’ for cyber-security requirements which makes it a particularly good fit for “smaller operators without the in-house capability to put together their own solutions”, he said. Inmarsat’s Fleet Secure offers a ‘one-stop shop’ for cyber-security requirements Combining three powerful components – Fleet Secure Endpoint, Fleet Secure Unified Threat Management, and Fleet Secure Cyber Awareness Training – the Fleet Secure portfolio provides the tools and facilitates a risk-management approach, supporting “compliance with the new requirements” and, more broadly, “increasing cyber resilience”, Eve added.
Harbour insights
The maritime industry is taking important steps to improve cybersecurity, catching up rapidly by introducing other industries' best practices into information technology (IT) and operational technology (OT) onboard vessels. Work remains to be done to ensure a cyber-resilient worldwide fleet of maritime operations. The way forward is through collaboration among all major stakeholders. Remote-controlled and autonomous ships In the future, the marine industry will increasingly use remote-controlled and autonomous ships and infrastructure. One can imagine multi-ship, multi-infrastructure hybrid scenarios where a software failure or a cyber-attack could result in widespread damage. “Protecting this advanced marine industry will drive the need for even higher levels of cybersecurity, reliability, and robustness of marine automation systems and software,” says Svante Einarsson, Head of Maritime Cyber Security Advisory, DNV Cyber. Cybersecurity insights CyberOwl complements DNV Cyber with advanced analytics and threat management for maritime vessels Einarsson shares additional insights into cybersecurity for the maritime industry in our recent interview. DNV expanded its cybersecurity capabilities by acquiring Applied Risk in 2021 and Nixu in 2023, forming DNV Cyber with over 500 experts. This merger enhances maritime cybersecurity by integrating IT and industrial control system security services, offering comprehensive solutions from risk assessment to incident response. CyberOwl complements DNV Cyber with advanced analytics and threat management for maritime vessels, ensuring real-time threat monitoring and support to sustain regulatory compliance. Maritimeinformed.com: What are the cybersecurity vulnerabilities in the maritime market? What are the possible consequences and/or worst-case scenarios? Einarsson: The maritime industry faces several cybersecurity vulnerabilities, including the integration of IT and OT systems, unsecured Internet of Things (IoT) devices, outdated software, weak authentication, and human factors like phishing. The consequences of breaches can be severe, such as operational disruption, data theft, ransomware attacks, cyber-physical attacks, and supply chain disruption. A worst-case scenario includes hybrid incidents that compromise both IT and OT systems at the same time within highly trafficked areas (such as a port). Depending on the available time and alternative means, the vessel might run aground resulting in major oil spills, environmental disasters, and/or significant loss of life. These vulnerabilities and potential impacts highlight the critical need for robust cybersecurity measures in the maritime sector. Maritimeinformed.com: What is the role of regulations when it comes to cybersecurity in the maritime market, including IMO, IACS, and critical infrastructure regulations? How do regulations drive better cybersecurity practices? The EU’s NIS2 directive enforces robust cybersecurity strategies and incident reporting Einarsson: Regulations play a crucial role in maritime cybersecurity by setting global standards and ensuring compliance. The International Maritime Organisation (IMO) mandates cyber risk management in Safety Management Systems, while the International Association of Classification Societies (IACS) requires cybersecurity integration in systems and ships throughout the lifecycle of a vessel for new builds contracted after July 1, 2024. The EU’s NIS2 directive enforces robust cybersecurity strategies and incident reporting. These regulations drive better practices by standardising frameworks, holding organisations accountable, promoting holistic risk management, enhancing transparency, and fostering continuous improvement. This comprehensive regulatory approach forces all stakeholders in the industry (yards, vendors, and ship managers) to act and work together to implement effective cyber resilience. Maritimeinformed.com: How does greater awareness boost cybersecurity? What is the role of near misses in driving cyber awareness and investments? Einarsson: Greater awareness boosts cybersecurity by educating individuals and organisations about potential threats, leading to better prevention and response strategies. It fosters a culture of vigilance, reducing the likelihood of successful attacks. Near misses play a crucial role by highlighting vulnerabilities and demonstrating the potential impact of cyber threats without causing actual harm. These incidents drive investments in cybersecurity by showcasing the need for robust defences, and well-planned responses, and encouraging proactive measures to prevent future breaches. Maritimeinformed.com: What are the pitfalls of over-confidence and under-preparation when it comes to cybersecurity? Einarsson: Overconfidence in cybersecurity can lead to complacency, ignoring potential threats, and underestimating attackers. For example, relying on boundary protection only, and believing that a system is impenetrable might result in neglecting regular updates and patches, leaving it vulnerable to exploits. Under-preparation, on the other hand, means inadequate de fences, response plans, and drills. An example is the 2017 Equifax breach, where failure to patch a known vulnerability led to the exposure of sensitive data of 147 million people. Both pitfalls can result in significant financial and reputational damage. Maritimeinformed.com: What is the role of technology advancements in driving the need and awareness of cybersecurity (e.g., the impact of digitisation, decarbonisation, automation, etc.)? Digitisation and automation support decarbonisation also increase the need for cybersecurity Einarsson: Decarbonisation is one of the key shaping factors in maritime today. Technology advancements like digitisation and automation support decarbonisation but also increase the need for cybersecurity by expanding the attack surface and introducing new vulnerabilities. As industries adopt remote maintenance, IoT, artificial intelligence (AI), and other technologies, the complexity and connectivity of systems grow, making them more susceptible to cyber threats. An example is how scrubber systems with modern technologies such as remote connectivity are retrofitted onboard older vessels today, creating a new and potentially unmanaged gateway to the control systems onboard the vessel. In other words, cybersecurity enables digitisation and decarbonisation. Maritimeinformed.com: What is the labor situation when it comes to the skillsets needed for cybersecurity excellence? Is there a shortage of expertise and how can it be addressed? Einarsson: The cybersecurity industry faces a significant skills shortage, with a very large number of positions unfilled globally. This gap is driven by the rapid evolution of cyber threats and the increasing complexity of digital environments. To address this, organisations should adopt skills-based hiring, offer continuous training and upskilling, and create clear career paths. Attracting diverse talent and collaborating with educational institutions can also help bridge the gap. Emphasising both technical and soft skills is crucial for developing a robust cybersecurity workforce. Many times the best option is to combine different competencies of several people into an aligned team, such as superintendents with OT system and operation expertise with cybersecurity and IT fleet experts. Maritimeinformed.com: What is the emerging role of AI in cybersecurity, such as the ability to anticipate attacks before they happen? AI-driven tools can predict and anticipate attacks by recognising early warning signs, allowing teams to address vulnerabilities Einarsson: AI can significantly enhance cybersecurity teams' effectiveness by providing advanced threat detection and predictive analytics. Machine learning algorithms analyse vast amounts of data to identify patterns and anomalies that may indicate potential cyber threats. AI-driven tools can predict and anticipate attacks by recognising early warning signs, allowing teams to address vulnerabilities proactively. Additionally, AI automates routine tasks, freeing up human experts to focus on more complex issues. Human teams can assess AI-generated results, ensuring accuracy and context, and make informed decisions. Real-time threat intelligence and automated response systems ensure quicker mitigation of incidents, ultimately strengthening the overall security posture and reducing the likelihood of successful cyber-attacks. Maritimeinformed.com: What is the impact of geopolitics on cybersecurity? How does the geo-political situation contribute to risks? Einarsson: Geopolitics significantly impacts cybersecurity by increasing the frequency and severity of cyber-attacks. Conflicts like the Russia-Ukraine war have led to coordinated cyber and hybrid offensives, targeting critical infrastructure globally. Geopolitical tensions contribute to risks by creating an environment where state and non-state actors exploit vulnerabilities and accessible assets for espionage, sabotage, and disinformation. The most obvious related threat in the maritime domain is GPS and AIS spoofing which is very common in military active areas. Incidents have already happened where the untrained crew has had their ship impounded after being misled into foreign state waters.
Augmented reality (AR) is making waves across various industries, and maritime is no exception. For maritime professionals, AR offers practical, real-time solutions that enhance safety, optimise operations, and improve decision-making both at sea and onshore. Whether it’s helping crews navigate complex environments, assisting in ship maintenance, or providing on-the-job training, AR’s ability to blend digital information with the physical world is proving invaluable in the fast-paced and challenging maritime environment. This article explores the benefits, applications, and potential of AR in the maritime industry. Understanding AR and its intent Augmented reality (AR) overlays digital content—such as data, graphics, and 3D models—onto the real-world environment, enhancing users’ perception of their surroundings. Unlike virtual reality (VR), which creates entirely simulated environments, AR supplements the real world with additional information that can be viewed through devices like smartphones, tablets, or AR glasses. Accuracy, efficiency, and safety The core objective of AR in the maritime industry is to create a more intuitive and information-rich working environment In the maritime context, AR intends to enhance the accuracy, efficiency, and safety of various operations. By providing real-time data and visuals, AR allows maritime professionals to make better-informed decisions, whether they’re navigating a vessel through busy waters, inspecting machinery, or managing cargo in a port. The core objective of AR in the maritime industry is to create a more intuitive and information-rich working environment, reducing risks, preventing errors, and increasing operational efficiency. AR applications in maritime operations One of the most significant applications of AR in the maritime industry is in navigation. AR can assist ship officers by overlaying critical navigation data—such as chart information, vessel traffic, weather conditions, and obstacles—directly onto the real-time view of the sea. This helps enhance situational awareness, particularly in congested waterways or during low-visibility conditions like fog or storms. With AR, navigators can visualise information directly in their line of sight, minimising the need to shift focus between different instruments or screens. Maintenance and repair operations Maintenance and repair operations are another area where AR has proven to be highly effective. Technicians can use AR glasses or tablets to access real-time information on ship components, including interactive 3D models, schematics, and procedural guides. This allows for faster and more accurate repairs, reducing downtime and the need for specialised training. AR can also connect remote experts with on-site technicians, enabling real-time support and troubleshooting. Training and simulation Crew members can undergo immersive training sessions where they interact with AR-enhanced environments Training and simulation are other critical areas benefiting from AR. New crew members can undergo immersive training sessions where they interact with AR-enhanced environments, practicing tasks such as emergency procedures or cargo handling in a risk-free setting. This improves skill retention and reduces the time required to get new hires up to speed. In ports, AR can assist with cargo management by displaying real-time data on container contents, destination, and status. This streamlines the loading and unloading process, reducing errors and improving overall port efficiency. Benefits of AR for maritime stakeholders The integration of AR technology delivers a wide array of benefits to different maritime stakeholders, from shipowners and operators to port managers and regulators. For shipowners and operators, AR enhances the safety and efficiency of vessel operations. Improved navigation capabilities lead to fewer accidents, while real-time maintenance support reduces the risk of machinery failures and extends equipment lifespan. Immersive, on-the-job learning experiences Additionally, AR can cut training costs by providing immersive, on-the-job learning experiences that don’t require expensive simulators or extended training periods. Port operators also benefit from AR technology. Enhanced cargo management, optimised logistics, and real-time tracking of goods improve turnaround times and reduce operational bottlenecks. With AR’s ability to overlay data onto physical containers or equipment, ports can achieve greater accuracy in inventory management and resource allocation. Real-time data and augmented visuals AR can streamline the inspection process, ensuring that ships and ports meet regulatory requirements For manufacturers and engineers, AR enables the visualisation of complex equipment and components in a real-world context. This can facilitate better communication between shipbuilders, designers, and engineers, leading to more accurate construction and faster problem-solving when issues arise. Regulators and maritime authorities can use AR to improve safety inspections and compliance checks. By providing inspectors with real-time data and augmented visuals, AR can streamline the inspection process, ensuring that ships and ports meet regulatory requirements more efficiently. Encouraging Collaboration Across the Maritime Ecosystem One of the most exciting aspects of AR is its potential to foster collaboration among various maritime stakeholders. By connecting on-site personnel with remote experts through AR-enabled devices, maritime operators can access specialised knowledge without requiring experts to be physically present. This promotes better teamwork across geographical distances, improving problem-solving and decision-making in real-time. Reduces downtime For example, when a ship experiences technical issues in a remote location, AR allows an engineer onshore to guide a crew member step-by-step through the repair process, using visual overlays and interactive tools to ensure accuracy. This reduces downtime and ensures that operations can continue without the need for costly or time-consuming travel. Reduces errors By combining AR with digital twin technology, maritime professionals can access real-time digital replicas Collaboration is also enhanced in ship design and construction. AR allows shipbuilders, designers, and engineers to visualise and manipulate 3D models in a real-world environment, making it easier to collaborate on complex projects and reduce errors during the construction phase. Moreover, AR can integrate with broader industry initiatives, such as digital twins and automation. By combining AR with digital twin technology, maritime professionals can access real-time digital replicas of ships or port equipment, enabling more effective monitoring, predictive maintenance, and resource management. Misconceptions and challenges in adopting AR Despite its potential, some misconceptions about AR remain within the maritime industry. One common misconception is that AR is solely for high-tech, cutting-edge operations and isn’t suitable for traditional maritime businesses. However, AR technology is highly scalable, and its applications can be adapted to a wide range of maritime operations, from small vessels to large container ships and ports. Another misconception is that AR requires significant upfront investment in expensive hardware and software. Long-term savings While initial costs can be high, particularly for advanced AR glasses and devices, the long-term savings in operational efficiency, reduced training times, and improved safety often outweigh these costs. Additionally, more affordable AR solutions are emerging, making the technology accessible to a broader range of operators. Enhance focus and reduce cognitive load AR devices could create, particularly in high-stress environments like ship navigation or cargo handling There are also concerns about the potential distraction that AR devices could create, particularly in high-stress environments like ship navigation or cargo handling. However, when implemented thoughtfully, AR is designed to enhance focus and reduce cognitive load by delivering critical information directly to the user’s line of sight, rather than requiring them to divert attention to multiple screens or devices. Coordinating AR with Industry Initiatives and Future Trends AR is increasingly being integrated with other technological advancements in the maritime sector, including automation, the Internet of Things (IoT), and digital twin technologies. By providing real-time insights and data visualisation, AR can help facilitate the use of autonomous ships and enhance the monitoring and management of connected maritime systems. As the industry continues to prioritise sustainability, AR can also play a role in promoting greener practices. By optimising navigation routes and improving fuel efficiency, AR can help ships reduce emissions and minimise their environmental impact. AR-enhanced training As the technology continues to evolve, its applications will expand, offering new ways to improve safety Furthermore, AR-enhanced training can focus on eco-friendly practices, reinforcing the maritime industry’s commitment to sustainability. Looking forward, AR will likely play a crucial role in the future of maritime operations. As the technology continues to evolve, its applications will expand, offering new ways to improve safety, efficiency, and collaboration across the industry. AR navigating the challenges of the 21st century Augmented reality is poised to become a transformative tool in the maritime industry, offering tangible benefits in safety, operational efficiency, training, and collaboration. By integrating AR technology into maritime operations, professionals can stay ahead of industry challenges, enhance decision-making, and foster greater collaboration across the global supply chain. With the right approach, AR will not only improve day-to-day operations but also help future-proof the maritime industry as it navigates the challenges of the 21st century. {##Poll1732855978 - What area of maritime operations do you think would benefit the most from augmented reality (AR)?##}
U.S. President Joe Biden has signed an Executive Order aimed at shoring up the cybersecurity of U.S. ports, a move fuelled by mounting concerns about the vulnerability of this critical infrastructure to cyberattacks. This initiative marks a significant shift in policy, empowering key agencies and outlining concrete actions to bolster defences. By empowering key agencies, establishing clear standards, and fostering collaboration, the initiative aims to strengthen U.S. ports against the evolving threat of cyberattacks, safeguarding the nation's maritime economy and national security. Expanded authority for DHS The core of the Executive Order lies in granting the Department of Homeland Security (DHS) and the Coast Guard expanded authority to address maritime cyber threats. DHS gains the power to directly tackle these challenges, while the Coast Guard receives specific tools: Mandating Action: The Coast Guard can now compel vessels and waterfront facilities to address cyber vulnerabilities that endanger safety. This proactive approach aims to prevent incidents before they occur. Enhanced Visibility: Mandatory reporting of any cyber threats or incidents targeting ports and harbours becomes mandatory. This real-time information sharing allows for swifter response and mitigation efforts. Control and Inspection: The Coast Guard gains the authority to restrict the movement of vessels suspected of posing cyber threats. Additionally, inspections of vessels and facilities deemed risky can be conducted. Mandatory cybersecurity standards Furthermore, the initiative emphasises the importance of collaboration and information sharing Beyond these broad powers, the Executive Order establishes foundational elements for improved cybersecurity. Mandatory cybersecurity standards will be implemented for U.S. ports' networks and systems, ensuring a baseline level of protection across the board. This standardisation aims to eliminate weak links in the chain and prevent attackers from exploiting individual vulnerabilities. Furthermore, the initiative emphasises the importance of collaboration and information sharing. Mandatory reporting of cyber incidents fosters transparency and allows government agencies and private sector partners to work together in mitigating threats. Additionally, the Executive Order encourages increased information sharing among all stakeholders, facilitating a unified response to potential attacks. Risk management strategies To address specific concerns, the Coast Guard will issue a Maritime Security Directive targeting operators of Chinese-manufactured ship-to-shore cranes. This directive outlines risk management strategies to address identified vulnerabilities in these critical pieces of port infrastructure. The long-term success of this initiative hinges on effective implementation. The Executive Order encourages investment in research and development for innovative cybersecurity solutions, recognising the need for continuous improvement and adaptation to evolving threats. Recognising the urgency of cyber threats Some concerns exist regarding the potential burden of yielding with new rules for less port operators The initiative has been met with widespread support from port authorities, industry stakeholders, and cybersecurity experts who recognise the urgency of addressing cyber threats. However, some concerns exist regarding the potential burden of complying with new regulations for smaller port operators. Effective communication, resource allocation, and collaboration between all stakeholders will be crucial in ensuring the successful implementation of this comprehensive plan. “This Executive Order is a positive move that will give the U.S. Coast Guard (USCG) additional authority to enhance cybersecurity within the marine transportation system and respond to cyber incidents,” comments Josh Kolleda, practice director, Transport at NCC Group a cybersecurity consulting firm. The more impactful and noteworthy piece is the associated Notice of Proposed Rulemaking (NPRM) from the USCG on “Cybersecurity in the Marine Transportation System,” adds Kolleda. Portions of the proposed rulemaking look similar to the Transportation Security Administration (TSA) Security Directive for the rail industry and the Emergency Amendment for the aviation industry. Coordinating with TSA on lessons learned The focus here is on the PRC because nearly 80% of cranes operated at U.S. ports are manufactured The USCG should be coordinating with TSA on lessons learned and incorporating them into additional guidance to stakeholders and processes to review plans and overall compliance, says Kolleda. “At first glance, the NPRM provides a great roadmap to increase cybersecurity posture across the various stakeholders, but it underestimates the cost to private companies in meeting the requirements, particularly in areas such as penetration testing,” says Kolleda. “It is unclear if or how the federal government will provide support for compliance efforts. As this seems to be an unfunded mandate, many private companies will opt for the bare minimum in compliance.” “Cyber espionage and threats have been reported by the Director of National Intelligence from multiple nation-states including China, Russia, and Iran,” adds Paul Kingsbury, principal security consultant & North America Maritime Lead at NCC Group. The focus here is on the People’s Republic of China (PRC) because nearly 80% of cranes operated at U.S. ports are manufactured there, he says. Minimum cyber security requirements “The state-sponsored cyber actors’ goal is to disrupt critical functions by deploying destructive malware resulting in disruption to the U.S. supply chain,” says Kingsbury. “These threat actors do not only originate in China or other nation-states but also include advanced persistent threats (APTs) operated by criminal syndicates seeking financial gain from such disruptions. The threat actors don’t care where the crane was manufactured, but rather seek targets with limited protections and defences. The minimum cyber security requirements outlined within the NPRM should be adopted by all crane operators and all cranes, regardless of where they are manufactured.” Kingsbury adds: “The pioneering risk outlined in the briefing is that these cranes (PRC manufactured) are controlled, serviced, and programmed from remote locations in China. While this is a valid concern and should be assessed, there are certainly instances where PRC-manufactured cranes do not have control systems manufactured in PRC. For example, there are situations in MTS facilities where older cranes have been retrofitted with control systems of EU or Japanese origin.” Monitoring wireless threats “The Biden Administration’s recent Executive Order is a critical step forward in protecting U.S. ports from cyberattacks and securing America’s supply chains,” says Dr. Brett Walkenhorst, CTO at Bastille, a wireless threat intelligence technology company. “To ensure proper defense against malicious actors accessing port-side networks, attention must also be paid to common wireless vulnerabilities. Attacks leveraging Wi-Fi, Bluetooth, and IoT protocols may be used to access authorised infrastructure including IT and OT systems. Monitoring such wireless threats is an important element in a comprehensive approach to upgrading the defences of our nation’s critical infrastructure.”
Case studies
San Francisco-based maritime technology company - Sofar Ocean announces a partnership with the U.S. Naval Meteorology and Oceanography Command’s (CNMOC) Fleet Weather centres in Norfolk (FWC-N) and San Diego (FWC-SD). Wayfinder platform FWC-N and FWC-SD, the Navy’s two primary weather forecasting centres, are piloting Sofar’s Wayfinder platform to support the routing of naval vessels at sea. The FWCs are utilising Wayfinder to identify safe and efficient route options powered by real-time ocean weather data for Military Sealift Command (MSC) ships. Situational awareness Tim Janssen, Co-Dounder and CEO of Sofar, said, "Wayfinder will empower the Navy to enhance situational awareness at sea and leverage data-driven optimisation to continuously identify safe and efficient routing strategies." He adds, "Powered by our real-time ocean weather sensor network, Wayfinder will help the Navy scale its routing operations to support a heterogeneous fleet operating in conditions made more extreme by the effects of climate change." CRADA The platform displays real-time observational data from Sofar’s global network of Spotter buoys The Navy is evaluating Wayfinder under CNMOC and Sofar’s five-year Cooperative Research and Development Agreement (CRADA) signed in July 2023. Wayfinder reduces manual tasks for forecasters and routers by automatically generating a forecast along a vessel’s route. The platform displays real-time observational data from Sofar’s global network of Spotter buoys to reduce weather uncertainty for route optimisation, and predict unwanted vessel motions during a voyage. Real-time wave and weather observations The availability of accurate real-time wave and weather observations helps Captains and shoreside personnel validate forecast models and examine multiple route options more efficiently, streamlining a historically complex and arduous process. Lea Locke-Wynn, Undersea Warfare Technical Lead for CNMOC’s Future Capabilities Department, said, "A key focus area for the Naval Oceanography enterprise is fostering a culture of innovation through collaboration with our commercial partners." Vessel-specific guidance Lea Locke-Wynn adds, "Our ongoing CRADA with Sofar Ocean is a perfect example of how our partnerships can leverage the leading edge in industry to further Department of Defence operations." As the number of naval vessels at sea, including experimental and autonomous ships, continues to increase, forecasters and routers will have less time to spend manually producing vessel-specific guidance. Automated forecast-on-route guidance More efficient routing empowers FWC personnel to focus on challenging, mission-critical tasks Wayfinder helps fill this operational gap, enabling FWC-N and FWC-SD to more efficiently support a large fleet in real-time with automated forecast-on-route guidance. More efficient routing empowers FWC personnel to focus on challenging, mission-critical tasks that require their unique expertise. Streamlined decisions Captain Erin Ceschini, Commanding Officer, FWC-SD, stated, "By using Wayfinder, we’re able to better visualise our ships’ routes, and make safer and more streamlined decisions on route, speed, and heading." Captain Erin Ceschini adds, "Wayfinder has the potential to be a critical component of our day-to-day operations and a key driver of safe routing as we contend with an increasingly unpredictable weather landscape."
Strengthening trade relations and promoting collaboration between Valenciaport and China. This is the objective with which the Port Authority of València has traveled to China to participate in the 8th edition of the Maritime Silk Road Port International Cooperation Forum 2024, held from June 26 to 28, 2024 in Ningbo (China). The value proposition of the Valencian enclosure as a green, intelligent and innovative HUB of the Mediterranean has been the common thread of the presentation of the PAV in this forum. Advantages of Valenciaport as a strategic port Mar Chao has also described the strategic importance of Valenciaport for the Chinese market During the event, Mar Chao, President of the PAV, had the opportunity to present the competitive advantages of Valenciaport as a strategic port in the center of the Mediterranean (through which 40% of Spanish import/export is channeled) at the service of the business fabric of its area of influence and a link in the logistics chain. Mar Chao has also described the strategic importance of Valenciaport for the Chinese market as a key point of direct connection with Europe that promotes a green growth, market-oriented, with maximum efficiency in services and a complete logistic and multimodal integration. Commercial capacity of Valenciaport During her conference, the President also highlighted the commercial capacity of Valenciaport, with an area of influence of more than 2,000 kilometres that maintains a direct relationship with the main international ports. Cristina Rodríguez, Head of Containers of Valenciaport, accompanies Chao in the forum. Both have held business meetings with Asian companies and institutions, including the new president of the Port of Ningbo, Tao Chengbo. In the framework of this meeting, the representatives of Valenciaport and the Port of Ningbo have signed a memorandum of understanding (MOU) with the aim of strengthening their commercial collaboration. Silk Road Port and Maritime Cooperation Forum The Silk Road Port and Maritime Cooperation Forum of Ningbo (China) in which Valenciaport participates is a platform for open exchange and mutual learning in port development and maritime transport, within the framework of the Belt and Road Initiative. From a respect for the uniqueness of each participating port, the Forum is seen as a tool to foster collaboration in various fields to build bridges between supply and demand in business, investment, technology, talent, information, ports and cultural exchange.
Bennett Marine, a Division of Yamaha Marine Systems Company, needed a solution that integrated solar energy generation and mechanical upgrades to optimise both sustainability and working environment outcomes. However, adding the cooling capacity needed by a large warehouse, and the employees working there, during the long Floridian summers could significantly increase the utility load on the building. Solution Bennett Marine’s management approached its outsourced service provider, ABM. Having successfully completed two lighting upgrades on site, and acting as the current janitorial service provider, ABM took Bennet Marine’s request to its Infrastructure Solutions team. ABM’s Infrastructure Solutions designed an energy-efficient HVAC system supported by a rooftop solar PV array that offset utility costs with renewable energy, leading to a net 58% reduction in total utility usage for the building. ABM also assisted in securing tax credits and energy incentives for the project, as well as a new roof for the facility with additional building envelope improvements. Finding a better solution for the client ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements" “Service experts across our company worked together to solve a need and deliver the sustainability solution Bennett Marine needed,” said Mark Hawkinson, President of ABM Technical Solutions. He adds, “ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements, improve indoor air quality, address waste and inefficiency, and create a positive impact for communities.” In addition to the new roof, net energy offset, and improved cooling, ABM was able to assist the project in receiving an estimated $226,000 in tax credits and $224,000 in Energy Incentives through the Federal MACRS (Modified Accelerated Cost Recovery System). Benefits ABM’s Infrastructure Solutions enable businesses to invest in critical infrastructure needs and achieve sustainability, security, and resilience goals. A custom energy program drives costs out of operating budgets and redirects savings to critical needs, helping fund improvements. Highlights of the project for the Deerfield, Florida, warehouse include: Projected energy cost savings in the first year of $12,701 Replacement of ageing roof and speed roll doors to reduce energy loss Solar panel installation is capable of offsetting 66% of the building’s utility use
At Scheveningen Harbour in the coastal city of The Hague in the Netherlands, an AI-based video security system from Bosch Building Technologies is now ensuring that every single ship or boat entering or leaving the harbour is logged. The customised solution developed by Bosch together with its partner BrainCreators automatically registers and classifies shipping traffic. Intelligent security solution Until now, employees at the port control centre had to keep an eye on shipping traffic around the clock from the window of the control centre and manually record the 80 or so vessels that pass through the port every day. The city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen The reason for the investment in the intelligent security solution was the fear that criminals would seek alternative routes via smaller ports such as Scheveningen, now that large Dutch or Belgian ports such as Rotterdam and Antwerp have been more secure against smuggled goods for some time. This was reason enough for the city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen. Challenging task in Scheveningen Special conditions require individual solutions Most boats and ships entering the port of Scheveningen are not required to register and, unlike purely commercial ports such as Rotterdam, the port cannot simply be closed off. In addition to cargo ships, there are also fishing boats and private sailing yachts at anchor, with small dinghies and rowing boats cruising between them. Keeping track of the movement of goods in particular is therefore a challenging task in Scheveningen, where the video security system with intelligent video analysis installed by Bosch provides welcome support. Author's quote The requirements for this project were very specific because the shipping traffic not only had to be filmed" "The requirements for this project were very specific because the shipping traffic not only had to be filmed, but also registered and classified. The solution also had to provide information about the speed of travel," says Niels van Doorn, Senior Manager Solutions & Portfolio at Bosch Building Technologies in the Netherlands. "Standard software can't do that. Together with our partner, we have therefore developed an AI that can identify and classify ships of all kinds–from passenger ships and freighters to sailing yachts and inflatable boats." This data aids in identifying suspicious shipping movements. Flexidome IP starlight 8000i cameras No sooner said than done – and in the shortest possible time Development, planning and implementation only took around 12 months. Two intelligent video cameras at the mouth of the harbour now record the traffic. The specially developed AI classifies the ship types and registers them in a file. Due to the difficult lighting conditions in the port, the Flexidome IP starlight 8000i cameras from Bosch were chosen. They deliver detailed images even in challenging weather and lighting conditions and enable the staff in the control centre to see every detail, even in very bright or dark image sections. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen All boat identifiers are recorded, documented, stored and automatically provided with additional information on date and time, direction of travel and speed around the clock using AI. The streams from the cameras are fed directly into a video management system. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen. By analysing all the data, peak times, ship types, trends and deviations from the norm are determined. New video documentation "The dashboard gives staff an overview of all activities in the port. The software protects the privacy of the people recorded by making their faces unrecognisable. The new video documentation now provides solid evidence and helps to identify suspicious and unusual situations more quickly and effectively," says Ferry Ditewig, Business Development Manager at Bosch Building Technologies in the Netherlands. The video solution is also well equipped for future challenges and can be flexibly expanded as required: for example, additional information from external sources could be integrated, such as meteorological data, tides or the automatic identification system (AIS) for exchanging ship data.
Wärtsilä ANCS, part of technology group - Wärtsilä, has delivered to Seaspan, a marine transportation and shipbuilding company, cutting-edge autonomous SmartDock capabilities to the seas. This delivery marks a significant step towards autonomous docking and undocking operations, making maritime activities safer and more efficient. The SmartDock system developed by Wärtsilä ANCS enables Seaspan to perform autonomous docking manoeuvres even in challenging conditions, where currents reach up to two knots. With its advanced technology, SmartDock guarantees consistent, safe, and predictable docking and undocking manoeuvres every time, reducing the need for intensive interaction from the vessel’s captain. Wärtsilä ANCS's laser sensor Wärtsilä ANCS’s scope of work, which was signed in 2021, has fed the liberated SmartDock system Wärtsilä ANCS’s scope of work, which was signed in 2021, includes providing the autonomous SmartDock system, including track development for autodocking at Tilbury, Duke Point, and Swartz Bay ports in Canada. Notably, the SmartDock system employs an advanced UKF (Unscented Kalman Filter) estimator, combining sensor measurements from various sources, such as GNSS (Global Navigation Satellite System) and Wärtsilä ANCS's laser sensor Cyscan AS, to calculate precise position and rate estimates of the vessel's motion. Advanced controller allocates thrust and steering commands This data is then compared to a preprogrammed ideal trajectory of the vessel, and the advanced controller allocates thrust and steering commands, ensuring safe and consistent autonomous docking and undocking manoeuvres. The commissioning of the Seaspan Trader cargo vessel has just been completed, with the Seaspan Transporter cargo vessel scheduled to be commissioned in late 2023/early 2024. These vessels, equipped with the SmartDock system, will operate in the waters of British Columbia, Canada. Wärtsilä and Seaspan partnership “Wärtsilä ANCS is excited to continue supporting Seaspan and build on an already strong working relationship. We look forward to the potential implementation of the SmartDock product across some other vessels in Seaspan's ferry fleet, further advancing the automation and efficiency of maritime operations,” commented Klaus Egeberg, Director, Dynamic Positioning, Wärtsilä ANCS. “Seaspan is proud to lead the charge in this technological advancement in vessel manoeuvring. The integration of Wärtsilä ANCS's SmartDock system into Seaspan Trader exemplifies our unwavering commitment to excellence and innovation in maritime operations,” says Alexander Treharne, Integration Engineer, Seaspan.
Båtbygg AS has placed an order with Teknotherm for a complete ammonia freezing system for Austral Fisheries’ new longline fishing vessel. The vessel is designed by Marin Teknikk AS for operation in the Antarctic Ocean, surrounded by some of the world’s harshest weather conditions. Teknotherm freezing system The newbuild no. 009 and named ‘Austral Odyssey’ will have a length of 70 metres The newbuild no. 009 and named ‘Austral Odyssey’ will have a length of 70 metres and a breadth of 14.6 metres. Delivery of the ship will be in December 2025. Freezing-in of products will be by blast freezers and plate freezers, all served by the ammonia freezing machinery, which will also keep the storage hold and bait hold at low temperature. Austral Fisheries Austral Fisheries owns and operates one of Australia’s largest fleets of fishing vessels. The fleet consists of 18 vessels with different areas of operation and catch, from toothfish in the south to prawns and tropical reef fish in the north. Austral Fisheries took delivery of the fishing vessel MS ‘Cape Arkona’ from Båtbygg AS in 2020, which also features a complete freezing system from Teknotherm, and they are proud to once again be chosen as a supplier to Båtbygg and Austral Fisheries.

