Cyber security
Intellian’s eagerly-awaited C700 Iridium Certus® maritime terminal has now been launched and is expected to quickly secure a reputation as the most powerful and technically advanced Iridium Certus® terminal on the market. With its best-in-class RF performance, the C700 can deliver out-of-the-box uplink speeds of 352kbps and downlink speeds of 704kbps by default, with equally impressive low-elevation-angle RF efficiency thanks to its unique 12-patch phased array antenna technology....
Intellian is pleased to reveal that two of its industry-pioneer antenna systems, the v60Ka 2 and v100NX Ka, have gained type approval from Telenor Satellite for use on their THOR 7 Ka-band GEO satellite network. This means that the systems are now officially certified to take their place in service alongside Intellian’s v85NX, the first 85cm antenna to receive type approval on the network. The Intellian v100NX Ka delivers market-pioneer RF performance and is future-proofed with a special...
While cruises are stuck in port for the next few months, the overall maritime mobility satellite market remains resilient, and increased bandwidth demand from shipping vessels offers a need that antenna companies can meet. Cruises seemed to be a key part of the pandemic’s spread around the world. A review by The Washington Post of cruise line statements, government announcements, and media reports found that the coronavirus infected passengers and crew on at least 55 ships, abo...
Satcomms is one of the most competitive and challenging sectors in the superyacht industry. Mobile communications on shore are developing at a tremendous pace, with users now able to experience similar connection speeds when roaming as they do in the home or office, and these high expectations continue when an owner or their guests and crew board a yacht. Yet delivering seamless and efficient connectivity at sea is a demanding task: gaming, video streaming, 8K TV, on-board cinema, socialising...
Intellian is delighted to announce that it will be commencing the production of a wide range of dedicated user terminals for the global low-earth orbit (LEO) satellite communications provider OneWeb, ready for delivery in 2021 and beyond. Looking to 2021, OneWeb is focused on scaling the satellite constellation to begin commercial services starting at the end of next year to the UK, Alaska, Canada, Northern Europe, Greenland, Iceland, and the Arctic Seas. Intellian announced its partnership wi...
Intellian is pleased to announce that it has received approval for its v240MT 2, v240M 2, v240M and v150NX antennas from the Brazilian National Telecommunications Agency, ANATEL. These powerful, high-throughput antennas are widely used in the energy industry, so this approval opens the door for Brazil’s extensive oil and gas market to adopt Intellian’s antenna technology. Brazilian regulations Telecommunications products to be sold and used in Brazil must have a Certificate of Con...
News
Intellian is proud to announce the v45C, the smallest antenna the company has yet developed for the maritime satellite communications market. The C in the product name represents its compact form factor. This new 45cm unit will bring VSAT to new markets where there is limited space available for communications equipment, such as workboats, leisure craft, fishing boats, small commercial and government vessels. The v60E & v45C The v45C extends the portfolio still further, opening up a new market of smaller vessels Intellian is committed to empowering connectivity for all, and recent launches have focused on enhancing user experience and capabilities with smaller VSAT solutions; first with the 60cm v60E antenna launched last year, and now the v45C. The v60E has been a global success across multiple markets, with a significant volume of installations and sustained growth demonstrating that small VSAT is a key area of interest for both new and existing customers. The v45C extends the portfolio still further, opening up a new market of smaller vessels which have yet to benefit from the data speeds and capacity delivered by VSAT. Straightforward installation Both the v60E and the v45C draw on the advanced technology developed for Intellian’s NX Series antennas, which range in size from 85cm to 150cm. Installation is made straightforward by single-cable, dome-on connection, while commissioning is facilitated by the built-in, browser-based AptusNX antenna management and diagnostics software. This enables the installer to follow a simple wizard to get the system up and running, and permits both local and remote diagnostics. Intellian CEO on v45c Eric Sung, CEO, Intellian Technologies, said: “We’re delighted to launch the new v45C antenna, which is an innovative and keenly anticipated addition to our maritime VSAT product portfolio.” “The v45C antenna will deliver compact, cost-effective connectivity to multiple customer segments, especially those which have been unable to install VSAT in the past owing to space considerations or performance constraints.” “We expect the v45C to open up new markets, and look forward to collaborating with new customers to help them make the most of the many advantages that VSAT connectivity with Intellian products has to offer.” Smaller antennas Smaller antennas have been made possible through Intellian’s innovative design and the introduction of new high-throughput (HTS) satellite technology by multiple network operators. HTS satellites use spot beam technology to deliver focused, high-power service to smaller areas. This enables frequency re-use across the satellite’s coverage area and reduces cost, and for service providers, means that a small antenna can deliver connectivity and performance at reasonable cost to the customer. Intellian are now leveraging these advances to bring their innovation and reliability to transform connectivity for all.
Anemoi Marine Technologies Ltd, an industry pioneer in wind-assisted propulsion systems, has announced that it is collaborating with Hafnia Limited, Guangzhou Shipyard International (GSI), and DNV to develop the integration design of Rotor Sails suitable for installation on 50,000 dwt Medium-Range (MR) tanker vessels. The companies signed a Joint Development Project (JDP) in April 2025 to develop a new generation of efficient and environmentally friendly Rotor Sail vessel designs to increase the efficiency of MR tankers within the wider global fleet. How Rotor Sails can improve Anemoi and Hafnia will undertake several engineering studies to establish specifications As part of the project, Anemoi and Hafnia will undertake several engineering studies to establish specifications related to how Rotor Sails can be safely and efficiently installed on the deck of MR tankers, alongside additional electrical and control system layouts for these vessels. In addition, the studies will include calculations to examine how Rotor Sails can improve the Energy Efficiency Design Index (EEDI) and Energy Efficiency Existing Ship Index (EEXI) values of existing and future MR tankers. Rotor Sail’s design integration GSI will apply its naval architecture and marine engineering principles to develop essential technical documentation for the new Rotor Sail’s design integration, while DNV will undertake an Approval in Principle (AiP) assessment to ensure that the design is feasible and verifies that no significant obstacles exist to prevent the design from being realised based on current and foreseeable regulatory and class requirements. “Participating in this joint development project allows us to collaborate with industry partners to unlock the full potential of Rotor Sails on MR Tankers. It supports Hafnia’s decarbonisation strategy to assess and embrace the potential of innovative technologies to improve fuel efficiency and reduce vessel emissions,” shared Jesper Kristiansen, Hafnia’s General Manager Technical. Vessel energy efficiency DNV will undertake an Approval in Principle (AiP) assessment to ensure that the design is feasible “WAPS, like Rotor Sails, are spreading throughout the industry, enabled by new materials, data and software, and evolving rules and regulations. Across all segments, we still have room to improve vessel energy efficiency and WAPS have emerged as one of the most attractive tools for shipping to make immediate, impactful gains in this area." "DNV is very pleased to be part of this forward-looking group, and build on a cooperation with Anemoi, Hafnia and GSI that is driving shipping’s journey towards a more sustainable future,” said Mr Shao Guang Chi, Station Manager of Guangzhou Station at DNV Maritime. Integrating Rotor Sails into MR tankers “With new regulations driving the need for lower emissions, the time is right to adopt highly efficient ship designs." "Integrating Rotor Sails into MR tankers is a necessary step, and together with our partners, we’re committed to delivering vessels that meet both environmental and commercial demands,” said Deputy Chief Engineer, Huang Jun of Guangzhou Shipyard International (GSI). Tanker sector for novel technology Rotor Sails, also known as ‘Flettner Rotors’, are vertical cylinders that harness the renewable power “There is growing interest within the tanker sector for novel technology that can help reduce the carbon footprint of their vessels and increase their value, particularly as the MR tanker fleet is expected to grow in the coming years." "Our partnership with Hafnia, alongside GSI and DNV, will ensure a new generation of MR tankers that utilises Rotor Sails to improve their efficiency and sustainability credentials hits the water in the not-too-distant future,” said Nick Contopoulos, Chief Production and Partnerships Officer of Anemoi. Reduce the carbon emissions and fuel consumption Rotor Sails, also known as ‘Flettner Rotors’, are vertical cylinders that harness the renewable power of the wind to provide additional forward thrust and improve the energy efficiency of the vessel. This energy-saving technology is increasingly being sought after by ship owners and operators as a cost-effective and immediate solution to reduce the carbon emissions and fuel consumption of their vessels, as well as helping meet international emission reduction targets.
As the FuelEU Maritime regulation enters into force, the shipping industry may be looking at a surprising upside. Instead of acting solely as a cost driver, the regulation could create a net financial gain, potentially around €250 million, according to a recent analysis by maritime data and compliance firm OceanScore. “FuelEU isn’t just another penalty,” said Albrecht Grell, Managing Director at OceanScore. “It’s structured in a way that can push money back into parts of the industry — but only if you understand where and how that happens.” Understanding the compliance landscape OceanScore’s analysis focuses on the balance of GHG intensity compliance under FuelEU OceanScore’s analysis focuses on the balance of GHG intensity compliance under FuelEU. The initial compliance deficit across vessels exceeding the regulation’s threshold is estimated at around 2.1 million metric tons (MT) of CO₂e, while more efficient vessels — mainly LNG and LPG carriers — generate a surplus of about 1.3 million MT of CO₂e. That leaves a net compliance gap of roughly 0.8 million MT, which is likely to be closed using biofuels. These fuels, such as UCOME, have a lower calorific value and higher price point, but offer the advantage of emissions reduction credits and corresponding savings under the EU ETS. At the prices, factoring in the ETS phase-in rate of 70% and current exchange rates, covering this compliance gap via biofuels is expected to cost the industry around €200 million, or €230 per MT of CO₂e. While that’s not insignificant, it’s a relatively modest figure for an industry of this scale. What happens on the revenue side? The other half of the story is about how emissions-related costs are passed on, especially in container, ferry, and cruise segments, which together make up nearly 50% of total emissions. In many cases, emissions surcharges are now included in COAs, and some are linked to FuelEU’s penalty levels. “It’s not a universal practice, but we’ve seen a significant number of surcharges that shadow the penalty rates,” Grell said. “And when you run the numbers, even conservatively, the revenue side starts to look pretty interesting.” How sustainable that is remains uncertain OceanScore’s model assumes that just half of the operators apply surcharges at two-thirds OceanScore’s model assumes that just half of operators apply surcharges at two-thirds of the penalty rate, which equates to about €640 per MT of CO₂e. Under these conditions, total additional revenue could reach €450 million. Subtracting compliance costs leaves a potential net gain of €250 million — although how sustainable that is remains uncertain. “Windfalls like this don’t last forever,” said Grell. “But in the short term, there’s clearly value on the table. The trick is knowing how to capture it — and who actually does.” Who benefits — and why managers matter Who benefits from this value shift depends on where they sit in the value chain. Owners, charterers, and ship managers all have different exposure to compliance costs and different leverage in passing them along. Charterers may aim to pass on more cost than they reimburse, owners will negotiate how these costs are handled, and managers - especially third-party ones - often sit at the centre of compliance obligations. Responsibility for compliance FuelEU doesn’t just introduce a new rule, it’s setting the stage for a compliance credit market “Ship managers are in a uniquely exposed position,” says Grell. “They carry the responsibility for compliance but typically operate on tight margins. The additional cost, for tools, processes, and reporting systems could quickly reach €3,000–4,000 per vessel annually.” “Managers shouldn’t be shy about asking for their share of this upside,” Grell said. “They’re doing the heavy lifting, and it’s in everyone’s interest that they’re properly resourced to do it well.” Preparing for a new compliance market FuelEU doesn’t just introduce a new rule, it’s setting the stage for a compliance credit market. As operators buy and sell surpluses and deficits, pricing, liquidity, and strategy will become real levers for competitiveness. OceanScore is working with shipping companies to help them navigate this evolving space, offering data-driven compliance tools, emissions strategy support, and access to pooling mechanisms. “Whether you’re a charterer, an owner, or a manager, this is a moment to get ahead of the curve,” Grell said. “The costs are manageable, and the opportunity is real — but only if you’re prepared.”
Intellian, the global pioneer of mobile satellite communication antenna systems, is delighted to announce the unveiling of the v100NX, the all-new 1m Ku- to Ka-band convertible maritime VSAT terminal. Intellian’s latest NX series antenna is designed to simplify and streamline the entire VSAT lifecycle, enabling access to multiple global satellite communication services, providing the crucial connectivity required to leverage new efficiency and welfare enhancing digital applications. Intellian v100NX The Intellian v100NX is a cutting-edge 1m dual-band convertible antenna, future-proof through its GEO (Geostationary Earth Orbit), MEO (Medium Earth Orbit) and LEO (Low Earth Orbit) constellation tracking capabilities. It also features an optimised reflector and radome designed to perform efficiently across 2.5GHz wideband Ka network services in the future. Simpler installation As with all NX platform antenna systems, the v100NX uses a single coaxial cable combining Tx, Rx, and DC power As with all NX platform antenna systems, the v100NX uses a single coaxial cable combining Tx, Rx, and DC power. This radically simplifies the installation process, which saves time and reduces cost. Its standardised modular components lower the total cost of ownership by streamlining on-board maintenance and by further increasing industry leading reliability. The shared common modules provide additional value by reducing spare part stock requirements for service providers, and by enabling a faster repair time for the end-customer. The new AptusNX software Additionally, Intellian’s upgraded antenna management and control platform, the new AptusNX software, includes a revolutionary installation wizard with a step-by-step commissioning guide for easier setup. Its user-friendly, automated functions minimise operators’ inputs for cable loss compensation, improve line-up testing, as well as remote diagnosis, as the platform sends alerts when predictive maintenance is required. Faster performance Vessels equipped with the v100NX will experience faster and higher performance With Intellian’s sub-1m v85NX and 1.5m v150NX already available, the launch of the 1m v100NX, the de facto VSAT antenna size within the commercial shipping industry, allows Intellian to offer its next-generation and innovative technologies to a wider section of maritime end-users. Vessels equipped with the v100NX will experience faster and higher performance data and voice services for operations and crew. Advanced yet cost effective “It’s rewarding to bring all the innovative features of the NX series to an antenna in the industry’s most common size,” comments Eric Sung, CEO, Intellian. “As a highly adaptable, future-proof system, the v100NX provides the most advanced, yet cost-effective platform to leverage new connected applications vital to stay efficient and competitive today and tomorrow.” The Intellian v100NX will be commercially available in July.
The Maritime Standard has confirmed the programme for the third edition of the Transportation and Climate Change Conference (TACCC), which will take place on Thursday, 25th September 2025, at the Saadiyat Rotana Resort in Abu Dhabi, UAE. Building on the momentum of previous editions, TACCC 2025 will once again bring together key industry players from across the transport spectrum to explore practical steps toward achieving sustainable, low-carbon transportation systems. Climate goals across the transportation sector The programme has been developed to provide participants with actionable insights into policy direction This year’s event will be held under the theme “Accelerating Sustainable Transportation: Innovation, Policy & Climate Action,” reflecting the growing urgency to align operational realities with climate goals across the global transportation sector. The programme has been developed to provide participants with actionable insights into policy direction, regulatory updates, technological developments, and investment priorities, all essential to reducing emissions and enhancing environmental performance. Aspects of decarbonisation The conference will open with a keynote address by a prominent industry pioneer, setting the tone for a day of focused discussion. This will be followed by two dedicated sessions, each exploring critical aspects of decarbonisation and innovation in transportation. Challenges in achieving net-zero goals The session will also take into account the broader context of ongoing geopolitical uncertainties The first session, titled Net-Zero Maritime Transport – Policy, Investment & Global Roadmap, will examine the role of policy frameworks, green financing mechanisms, port decarbonisation strategies, and the prospects for alternative fuels. The session will also take into account the broader context of ongoing geopolitical uncertainties and their impact on investment flows and global regulatory alignment. Following individual speaker presentations, a panel discussion will bring together key stakeholders to explore synergies and challenges in achieving net-zero goals across the transport sector. Innovations & Technology for Decarbonised Mobility The second session, Innovations & Technology for Decarbonised Mobility, will focus on the integration of emerging technologies to drive progress. Topics will include the electrification of transport systems, digital transformation, artificial intelligence, and scalable infrastructure for multimodal networks. Speakers will assess how innovation can support compliance, improve operational efficiency, and reduce the sector’s carbon footprint. This session will also conclude with a panel discussion to enable a comprehensive exchange of views and practical experiences from across the industry. Current challenges and practical pathways Each session will feature a panel of expert speakers representing industry, government Each session will feature a panel of expert speakers representing industry, government, finance, and technology. Their insights will offer a comprehensive view of current challenges and practical pathways to accelerate climate action in transportation. Full speaker details will be announced in the coming weeks. Q&A segments Audience engagement will be encouraged throughout the event, with Q&A segments built into each session to foster interactive dialogue. The conference will close with a networking reception, providing participants with the opportunity to exchange ideas and build new connections in an informal setting.
Nor-Shipping 2025, taking place in Oslo and Lillestrøm 2-6 June, has announced the shortlists for two of its most coveted accolades, the Next Generation Ship Award and the Ocean Solutions Award. Celebrating innovations, technologies and pioneering projects capable of balancing both environmental and commercial sustainability, the initiatives attracted a huge number of entries from across the world. Selecting the eventual winners was, according to Nor-Shipping Director Sidsel Norvik, “tougher than ever”. Pioneering projects Nor-Shipping’s Next Generation Ship Award champions trail-blazing projects that are either newbuildings under construction, conversions, retrofits, or recent deliveries. This year’s shortlisted entrants are: Windcat Workboats’ Elevation Series CSOVs: Hydrogen-powered, offshore service vessels developed in collaboration with Damen and CMB.TECH. Solvang Shipping’s Clipper Eris retrofit: Carbon capture and storage retrofit on a 21,000m3 ethylene carrier, reducing GHG emissions. NYK’s Sakigake conversion: The world’s first ammonia-fuelled tugboat, converted from LNG fuel to demonstrate low-carbon alternatives. Samskip’s SeaShuttle feeder vessels: Hydrogen fuel cell-powered zero-emission container ships for shortsea routes. Bibby Marine’s eCSOV hybrid vessels: Offshore wind support vessels designed for long-term zero-emission operations. From challenge to opportunity The Ocean Solutions Award, meanwhile, is open to Nor-Shipping participants with landmark innovations capable of helping the industry meet some of its most pressing challenges. As always, the competition was intense, with the expert jury eventually selecting the following shortlisted nominees: Wärtsilä Carbon Capture and Storage: A modular system designed for integration into existing propulsion setups, reducing CO₂ emissions. Zeabuz autonomous ship platform: Pioneering remote and autonomous vessel operations to address crew shortages and enhance safety. Wärtsilä ammonia solution: A full-scale deployment of ammonia as a marine fuel, showcasing safety and operational efficiency. ORCA AI situational awareness: An AI-driven platform enhancing navigational safety through real-time risk detection and data analysis. bound4blue’s eSail system: Innovative ‘suction sail’ wind propulsion solutions cutting fuel consumption, emissions and easing regulatory compliance for a wide range of vessel types. Fierce competition “What a year,” comments Nor-Shipping Director Norvik. “The competition was fiercer than ever, with some outstanding entrants, so getting this far in the awards should be a huge source of pride for all the shortlisted companies and teams." “The evolving nature of the competing fields every time we run these initiatives is a testament to both the progress within the industry and the continued commitment of key stakeholders to build a cleaner, smarter, and more resilient maritime future. We’re proud to support these innovations and can’t wait to see the winners enjoying the spotlight when the shipping world meets next month in Norway!” Winners of the Next Generation Ship Award The winners of the Next Generation Ship Award and Ocean Solution Award will be revealed in front of an audience of key industry decision makers at Nor-Shipping’s Ocean Leadership Conference on 3 June. This year’s Nor-Shipping programme, celebrating the 60th anniversary of the event week, focuses on the theme of #Future-Proof. More than 50,000 decision makers, and around 1,000 exhibiting companies, will attend the unique week-long event.


Expert commentary
When the Ballast Water Management (BWM) Convention came into force in 2004, it was in response to a crisis we couldn’t afford to ignore—one where invasive aquatic species, carried silently in ships’ ballast tanks, were devastating marine ecosystems. Now, two decades later, compliance with this environmental safeguard is no longer optional—and yet, as recent industry findings reveal, record-keeping failures account for 58% of compliance issues. That’s not a technology problem. That’s a documentation problem —one rooted deeply in data management practices and crew training, where small oversights lead to documentation issues, that may cascade into costly compliance failures. And that’s precisely where digital systems excel, guiding crews clearly to avoid mistakes in the first place. New ballast regulations At the IMO’s 82nd Marine Environment Protection Committee (MEPC 82), new ballast water record-keeping regulations were approved, coming into effect from 1 February 2025. These updates mark a significant tightening of documentation standards—and they could catch unprepared shipowners off guard if not acted on promptly. Why ballast water record-keeping is back in the spotlight These new updates aim to change that—and they’re stricter, smarter, and more detailed than before While MEPC 82 made headlines for advancing decarbonisation policies and ECAs in the Arctic and Norwegian Sea, it also honed in on ballast water—a topic that has quietly regained importance. The committee approved critical updates to how ballast water operations and ballast water management system (BWMS) maintenance are recorded. The goal: Enhance transparency, reduce ambiguity, and reinforce environmental protection by making records more structured, traceable, and actionable. This renewed focus is both a warning and an opportunity. In recent years, too many Port State Control detentions and inspection delays have stemmed not from hardware failures, but from poorly maintained or unclear ballast water records. These new updates aim to change that—and they’re stricter, smarter, and more detailed than before. What’s changing: Bypass scenarios and maintenance logging The revised guidelines introduce two new scenarios for vessels dealing with challenging water quality (CWQ) in ports: Scenario 3: A reactive bypass of the BWMS due to unforeseen poor water quality. Scenario 4: A pre-emptive bypass based on anticipated CWQ conditions. These additions are essential for vessels operating globally, particularly those above 400GT. They ensure that alternative operations—like ballast water exchange plus treatment (BWE + BWT)—are clearly documented. Without accurate records, even legitimate actions can fall short of compliance. Ballast Water Management Plan and OEM manuals MEPC 82 also mandates that BWMS care procedures must now be recorded directly in BWRB MEPC 82 also mandates that BWMS maintenance procedures must now be recorded directly in the Ballast Water Record Book (BWRB), in line with the ship’s Ballast Water Management Plan and Original Equipment Manufacturer (OEM) manuals. Responsible crew members must sign off on these records, ensuring traceability and crew accountability. This step isn’t just regulatory housekeeping—it aligns ballast water maintenance with how other onboard systems are already tracked, from engines to emissions. It’s a logical, overdue move toward consistency across compliance. Paper or digital: The format dilemma While the BWRB can still be maintained on paper or electronically, the burden of new structured data fields and stricter reporting timelines will be felt most by those still tied to manual systems. Each additional layer of documentation increases the chance of human error—and with nearly 6 in 10 compliance failures already stemming from admin issues, that’s a risk many operators can’t afford. This is where digital solutions can offer real relief. At NAPA, we’ve already implemented the latest IMO guidelines into our electronic logbook, so crews can comply with MEPC.369(80) requirements out of the box. With ready-made entry templates and smart input validation, data entry is quick, accurate, and audit-ready. NAPA implemented the latest IMO guidelines into an electronic logbook. Better still, once updated, operators can apply for the BWM Convention Electronic Record Book Declaration from their flag—ensuring that compliance is recognised internationally under MEPC.372(80). Less admin, more assurance Electronic logbooks don’t just streamline compliance—they enable better decision-making. When connected to onboard systems, they automatically pull operational data into the BWRB, reducing manual work and error margins. This frees up the crew to focus on operations and safety, rather than paperwork. From a management perspective, real-time visibility into ballast operations and maintenance records helps shore teams stay ahead of inspections and identify potential compliance gaps early. One logbook, many regulations While ballast water is the focus today, it’s not the only regulation demanding attention While ballast water is the focus today, it’s not the only regulation demanding attention. At NAPA, we’ve designed our logbook to support a wide range of evolving compliance frameworks—including MARPOL, EU-ETS, EU-MRV, CII, and the Garbage Record Book. This unified approach removes silos, reduces duplicated effort, and gives operators a more holistic view of vessel performance and compliance. A smarter way forward With decarbonisation and environmental regulations shifting at breakneck pace, even the most experienced crews and fleet managers can struggle to stay up to date. That’s where technology has a crucial role to play—not to replace expertise, but to support it. At NAPA, we work closely with shipowners and operators to configure regulatory record book templates according to their fleet workflows and each vessel’s specific operational profile. This ensures accuracy, ease of use, and most importantly, continuous compliance—even as the rules keep changing. Because in today’s compliance landscape, staying ahead isn’t just about meeting the minimum. It’s about building systems that help you adapt, respond, and thrive. And that starts with getting the record-keeping and data management right.
The shipping industry is currently navigating a profound transformation driven by environmental concerns, new emissions targets, and evolving regulations. As vessel owners and operators seek to reduce emissions while remaining competitive, determining the right strategy has become increasingly complex. Factors such as alternative fuel availability, fluctuating prices, and an ever-expanding range of technological solutions have made decision-making anything but straightforward. Lack of motivation Regulations evolve, technologies persist to advance, and can differ greatly from port to port The complexity arises from the many moving parts of the industry. Regulations evolve, technologies continue to advance, and infrastructure can differ greatly from port to port. For vessel owners committed to reducing their environmental impact, the challenge isn’t a lack of motivation, it’s finding the most effective way to navigate the myriad of options available. Hybrid propulsion systems One method gaining traction is data-driven decision-making through digital modelling. Rather than making decisions based on guesswork, digital modelling allows owners and operators to create a detailed representation of a vessel and simulate the performance of different strategies or technologies over its lifetime. That way, they can ‘test’ these approaches before committing large investments—particularly useful when considering new fuels or hybrid propulsion systems that are still maturing. Decarbonisation Modelling Service Digital modelling accounts for variables such as vessel speed, power needs, and route patterns Digital modelling accounts for variables such as vessel speed, power needs, and route patterns, applying machine-learning algorithms to find the most promising design or retrofit. It can also show how ideas might evolve if regulations tighten, or new fuels become more practical. At Wärtsilä, our Decarbonisation Modelling Service is designed to guide shipowners and operators through this maze of choices. In developing this tool, we have observed that shipowners required more than an “off-the-shelf” solution. They needed insights based on their own operational data, combined with practical knowledge of costs and likely regulatory trends. Benefits of digital modelling One of the main benefits of digital modelling is its flexibility. Depending on an owner’s goals, whether that’s meeting today’s regulations or planning for future mandates, they can explore multiple options. A fleet operator might compare installing hybrid batteries versus retrofitting for LNG or consider alternative fuels such as ammonia and methanol, or carbon capture. These simulations can factor in fuel prices, available bunkering infrastructure, and even unexpected events like global supply chain disruptions or future carbon taxes. Ship’s actual operational profile At Wärtsilä we often liken digital modelling as the closest thing to a crystal ball At Wärtsilä we often liken digital modelling as the closest thing to a crystal ball. While it isn’t perfect, it significantly improves our ability to make informed decisions and maintain flexibility as market conditions or regulatory landscapes shift. Consider, for instance, a mid-sized container ship operating in Asia. The owner, eager to lower CO2 emissions, might be unsure whether to retrofit for LNG immediately or wait for ammonia infrastructure to mature. Using a digital model based on the ship’s actual operational profile, we can test both scenarios—evaluating fuel price trends, port facilities, and the vessel’s remaining service life. Adopt an interim strategy If the model indicates that an LNG retrofit offers a promising return on investment along with moderate emissions cuts, the decision becomes clearer. Alternatively, if the potential for ammonia becomes evident sooner, it might be wiser to adopt an interim strategy or consider dual-fuel engines. It’s important to recognise that decarbonisation is not merely a box-ticking exercise to meet current regulations; it is a dynamic, ongoing process. With tightening rules from bodies like the International Maritime Organization (IMO) and the EU on carbon intensity, and with cargo owners increasingly demanding transparency, the need for adaptive, data-driven solutions is more critical than ever. LNG with battery storage Others might make quick retrofits to comply with rules and plan for bigger upgrades later Another strength of data-driven decarbonisation is that it is not a one-off activity. As a vessel operates, new information becomes available. Owners can update their models to reflect these shifts, allowing for continuous refinement. This matters because what is optimal now may only be a temporary measure. Some operators use LNG with battery storage for a few years, then switch to next-generation fuels as they become viable. Others might make quick retrofits to comply with regulations and plan for bigger upgrades later. Raw data into actionable insights There is also a perception that gathering and interpreting data is too complex or costly. However, many modern vessels are already equipped with the necessary sensors and tracking systems, and analytics software has become more accessible. The real value lies in transforming raw data into actionable insights. Digital models not only help in planning for evolving market conditions but also enable us to visualise and execute long-term strategies. Portion of global CO2 emissions The real test is balancing environmental aims with retail realities and regulatory forces Shipping contributes a notable portion of global CO2 emissions, giving the industry strong financial and ethical reasons to embrace cleaner operations. The real test is balancing environmental aims with commercial realities and regulatory pressures. With mounting pressure from regulators, customers, and investors, now is an opportune time to adopt data-driven approaches. A continuously updated model provides a practical way to keep up with changes in the market and policy landscape. By integrating operational data, anticipating possible scenarios, and remaining open to new solutions, the maritime industry can cut emissions without sacrificing competitiveness. Shipowners and operators Shipping is an industry that operates on tight margins and these tools must deliver financial stability as well as ongoing compliance. Digital modelling is not just another technical tool; it’s a forward-looking process that helps shipowners and operators steer a confident course in uncertain waters. As more companies experiment with alternative fuels, hybrid propulsion, and emerging technologies, having a robust method for evaluating these options is absolutely essential.
Maritime communications came a long way before they could deliver the first Global Maritime Distress and Safety System (GMDSS). Still, it is fair to say that their forward march has only accelerated in the two-and-a-half decades since. Today, shipping companies rely on satellite connectivity to protect their vessels and people and enable the digitalisation, decarbonisation, and crew-welfare initiatives on which its successes rely. Low-Earth orbit (LEO) networks Against this background, the new generation of low-Earth orbit (LEO) networks has entered the maritime market to great fanfare and expectation from ship owners, and their excitement is justified: LEO satellite coverage has the potential to span the globe, providing exceptional reliability and speed even during long voyages in the most remote locations. This facilitates real-time communication and efficient coordination between vessels and onshore personnel, ultimately supporting more profitable and sustainable fleet operations. Level of connectivity Moral obligations and regulatory requirements aside, providing high-quality crew internet LEO’s introduction into the maritime sphere has been equally well received by seafarers, who stand to benefit from a level of connectivity that keeps them better connected to family and friends than ever before, and to richer entertainment options at sea. Moral obligations and regulatory requirements aside, providing high-quality crew internet represents a wise investment from a competitive standpoint, enhancing as it does an organisation’s ability to attract and retain the brightest talent. Another advantage to seafarers and their employers, LEO connectivity offers stable onboard access to non-leisure services including mental-health support, telemedicine, and online learning resources, helping to keep a crew happy, healthy, and up to speed with the evolving requirements of their job. Limitations For all the benefits of LEO networks, it is important to acknowledge their limitations. For instance, LEO’s promise of delivering worldwide coverage remains to be realised, with certain countries yet to authorise its use in their territorial waters. This means that, depending on the trading route, a ship may encounter multiple LEO-coverage blackspots during its voyage. Susceptible to interference Regardless of the network type being used, vessels still need to compress and throttle data Like many satellite technologies, LEO networks are also susceptible to interference from atmospheric conditions that can disrupt communications, while network congestion at hotspots and drop-out at satellite handover may present additional connectivity challenges. Regardless of the network type being used, vessels still need to compress and throttle data on certain occasions, such as while in port, but LEO networks currently cap utilisation and therefore limit connectivity and availability further. Crew and commercial use In addition, maritime organisations should consider whether their LEO system is for both crew and commercial use. For a vessel deploying LEO connectivity to cover crew and business communications simultaneously, even a terabyte of data is unlikely to go far. Divided among a crew of 25, it equates to 40 gigabytes per person, enough for 13 hours of HD streaming with nothing remaining for commercial requirements. The solution Maritime software including critical communications-based services will need to be compatible with LEO To ensure reliable and consistent connectivity, support enhanced GMDSS communications, and meet the bandwidth needs of all stakeholders, a vessel will require multiple satellite provisions. This means that maritime software including critical communications-based services will need to be compatible with both LEO and more traditional, low-bandwidth networks and be able to switch between connections automatically to ensure uninterrupted service. GTMailPlus GTMaritime’s GTMailPlus, for example, is compatible with all major network types, regardless of bandwidth. Developed with optimisation in the maritime environment in mind, it provides secure and efficient data transfers irrespective of the service or combination of services a shipowner or manager uses. If disruptions do occur, GTMailPlus resumes data transmission from the point of interruption. Risk of a cybersecurity breach There have already been several reported cases of ship owners falling victim to significant cyber incidents As crew freedoms on the Internet increase and more onboard devices are connected to the network, the risk of breaches to cybersecurity is also rising dramatically: effectively, the vessel becomes a larger attack surface. There have already been several reported cases of ship owners falling victim to significant cyber incidents having adopted LEO systems without taking the necessary security precautions. Robust, intelligent, and scalable network Given that ships transfer diverse types of data that often involve critical and sensitive information, the consequences of any breach of vessel operations, safety, and privacy can be severe. Here too, the GTMaritime portfolio is continuously evolving to ensure robust, intelligent, and scalable network protection for owners. AI-based next-gen anti-virus technology In addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach In the latest partnership with CrowdStrike, GTMaritime’s cyber-security offering combines AI-based next-generation anti-virus technology with end-point detection and response capabilities. This, in addition to the enhanced security features included in all GTMaritime solutions, enables a holistic approach to vessel security. Conclusion LEO networks undoubtedly present a considerable opportunity for the maritime industry and have the power to transform connectivity at sea. However, there are several factors to consider before adopting an LEO system and regardless of advances in technology, optimised solutions for critical communications, security, and data transfer remain essential.
Harbour insights
Traditionally, bulk cargo unloading has faced challenges around operational efficiency, safety risks, environmental impacts, and high operational costs. Rough discharges, equipment wear, vibration damage, and limited weather operating windows have all constrained vessel utilisation and performance. Moreover, older unloading systems are energy-intensive and labour-dependent, increasing both costs and environmental footprint. Cargo unloading systems Many bulk cargo unloading systems depend on steep slope angles, which limit the types of materials that can be carried efficiently. MacGregor’s GravityVibe directly addresses this factor by allowing efficient discharge with significantly lower slope angles, thus broadening the range of cargo that can be handled. Many bulk cargo unloading systems depend on steep slope angles. Ship structures and unloading equipment “GravityVibe reduces reliance on gravity alone by augmenting the flow with controlled vibration,” says Mikael Hägglund, Senior Manager, Cranes at MacGregor. “This approach improves operational efficiency, enhances safety through more predictable material flow, and reduces wear on ship structures and unloading equipment.” Challenges of space utilisation and cargo versatility MacGregor is a provider of cargo and load handling solutions to maximise efficiency Additionally, the GravityVibe system will, in most cases, require only one hold conveyor and no cross conveyor in the hold, making the operations both cost-effective and sustainable, says Hägglund. MacGregor, based in Helsinki, Finland, is a provider of cargo and load handling solutions to maximise efficiency of maritime operations. As an augmented gravity self-unloading system, GravityVibe enhances cargo flow using vibration, enabling bulk materials to be discharged efficiently at lower slope angles (15–20 degrees). It reduces material blockages and optimises discharge without requiring steep holds, addressing the challenges of space utilisation and cargo versatility. Mechanical strain on vessel structures The system lessens mechanical strain on vessel structures, and supports safer, smoother, and more efficient operations across different cargo types. “Using lower slope angles allows ships to maximise cargo hold volume and transport a wider variety of bulk materials, including those that would not flow well with conventional systems,” says Hägglund. “It improves operational flexibility.” Integrity of the vessel Vessels benefit from a more compact and efficient hold design, optimising stability and construction Structurally, vessels benefit from a more compact and efficient hold design, optimising stability and potentially lowering construction and maintenance costs, adds Hägglund. “Managing vibration and sound levels is critical for maintaining the structural integrity of the vessel and ensuring crew safety and comfort,” he says. “Excessive vibration can lead to accelerated wear on ship components and fatigue damage over time.” GravityVibe’s design GravityVibe’s design ensures that both vibration and sound levels stay well below class-defined thresholds, preserving vessel longevity and reducing long-term maintenance and repair costs. Bulk cargoes have widely varying properties such as particle size, cohesiveness, moisture content, and chemical reactivity, all of which impact flow behaviour. Sticky, wet, or coarse materials require different unloading strategies to avoid blockages, segregation, or structural strain. Bulk cargoes have widely varying properties like particle size and cohesiveness. Broader spectrum of cargo types Key elements to achieve automation include fine-tuning self-optimisation algorithms GravityVibe’s vibration-driven approach adapts to these material differences, maintaining consistent discharge rates and ensuring operational reliability across a broader spectrum of cargo types without manual intervention or excessive mechanical modification, says Hägglund. More automated systems are on the horizon. Fully automated discharge is rapidly approaching reality, thanks to intelligent unloading systems like GravityVibe. Key remaining elements to achieve automation include fine-tuning self-optimisation algorithms, integrating predictive maintenance solutions, and standardising automation interfaces between vessels and ports. GravityVibe features MacGregor is actively working to refine onboard software, improve material recognition capabilities, and enhance real-time adjustment features. Wider industry adoption and regulatory frameworks are also crucial for achieving fully autonomous and seamless bulk unloading. GravityVibe features a built-in self-optimisation system that uses sensors to monitor material flow characteristics during discharge. Based on live data, it automatically adjusts vibration frequency and intensity to match the properties of each specific cargo, ensuring optimal unloading performance without manual recalibration. MacGregor is working to refine onboard software and improve material recognition. GravityVibe’s performance GravityVibe’s performance has been verified through a combination of laboratory studies MacGregor is fine-tuning this system by gathering real-world data from full-scale test rigs, analysing operational performance across various cargo types, and incorporating feedback loops to continually improve discharge efficiency and system responsiveness. Real-world validation is essential to prove that unloading systems perform reliably under operational conditions. GravityVibe’s performance has been verified through a combination of laboratory studies and full-scale rig testing. In-house tests and studies For example, validation by bulk solids researcher TUNRA showed efficient unloading across diverse materials such as wood chips, manufacturing sand, and gravel. In-house tests and studies with external specialists like KTH have confirmed low vibration levels, consistent discharge flow, and high operational reliability, providing strong evidence for commercial deployment. TUNRA showed efficient unloading across diverse materials such as sand. GravityVibe’s system design GravityVibe’s system design is based on long-lasting parts and improved cargo flow High maintenance requirements traditionally have led to significant downtime and increased operational costs. GravityVibe’s system design is based on long-lasting components and improved cargo flow that reduce risks for failures and needed service, thereby lowering maintenance costs/needs. “With real-time monitoring and smart diagnostics, potential issues can be detected and addressed before they escalate, minimising service interruptions,” says Hägglund. “This proactive approach enhances equipment availability and ensures better operational continuity for vessel operators.” MacGregor GravityVibe system When unloading standard bulk carriers, there is a need to clean the holds with manpower and external machines as the port cranes or the vessel cranes will not be able to empty the holds. The weather could also be a factor for delay in cases where the cargo is sensitive to water. For the MacGregor GravityVibe system, all material will be removed from the hold without any extra efforts. GravityVibe demonstrates that with intelligent use of vibration and lower slope angles can achieve the same — or even better — results. This approach not only enables broader cargo flexibility but also reduces structural stress, energy consumption, and environmental footprint.
Ammonia is gaining traction as a future fuel in the maritime industry, primarily due to its potential to significantly reduce greenhouse gas emissions. A key driver for ammonia's interest is that it can be carbon-free when combusted, which aligns with the maritime industry's increasing pressure to meet emissions regulations. However, most ammonia production currently relies on fossil fuels. Transitioning to "green ammonia" production is crucial for sustainability. If "green ammonia" is produced using renewable energy sources, it offers a pathway to near-zero emissions shipping. Safety measures and regulations Ammonia’s volumetric energy density – higher than hydrogen – makes it more practical for onboard storage. However, ammonia is toxic, which requires stringent safety measures and regulations for handling and storage. The combustion of ammonia can produce nitrous oxide (N2O), a potent greenhouse gas. Therefore, mitigation technologies are needed. Building the necessary infrastructure for ammonia bunkering and supply will be a significant undertaking. Developing guidelines for safe use Ammonia is poised to play a significant role in the maritime industry's transition to a future The International Maritime Organization (IMO) is developing guidelines for the safe use of ammonia as a marine fuel. Increasing numbers of companies are investing in the development of ammonia-fueled vessels and technologies. European Union (EU) legislation, such as the EU Emissions Trading System (ETS) and the FuelEU initiative to support decarbonisation, are pushing the maritime industry towards the use of alternative fuels, which is increasing the potential of ammonia. While challenges remain, ammonia is poised to play a significant role in the maritime industry's transition to a more sustainable future. Ongoing research and development Ongoing research and development are focused on improving safety, reducing emissions, and scaling up production. In essence, ammonia offers a promising pathway for the maritime industry to reduce its carbon footprint, but its widespread adoption depends on overcoming technical and logistical challenges. Working toward the future of ammonia Progress is already happening as the maritime industry works toward a future that includes the use of ammonia as a fuel. For example, one project underway aims to be a pioneer in establishing a comprehensive and competitive supply chain to provide clean ammonia ship-to-ship bunkering in the U.S. West Coast. Progress is already occurring as the maritime industry works toward a future A feasibility study is being conducted at the Port of Oakland, Benicia, and nearby major ports on the U.S. West Coast. A Memorandum of Understanding (MOU) between American Bureau of Shipping, CALAMCO, Fleet Management Limited, Sumitomo Corp. and TOTE Services LLC is jointly conducting the feasibility study. "We are proud to share our industry-pioneering expertise in ammonia as a marine fuel to support this study on the U.S. West Coast,” said Panos Koutsourakis, Vice President of Global Sustainability at the American Bureau of Shipping. “Our expertise in developing safety guidelines will support the consortium to address the ammonia-specific set of safety and technology challenges.” More global ammonia developments In another development, three LPG/ammonia carrier ships have been ordered at the South Korean shipyard HD Hyundai Heavy Industries (HD HHI). Danish investment fund European Maritime Finance (EMF) and international shipping company Atlas Maritime have confirmed the order. HD HHI’s parent company, HD Korea Shipbuilding & Offshore Engineering (HD KSOE), revealed the order for $372 million in March 2024. The three 88,000 cubic-metre LPG dual-fuel carriers, capable of carrying and running on ammonia, are scheduled for delivery in December 2027. The vessels will be named EMF Viking I, II, and III. Also, Lloyd’s Register (LR) and Guangzhou Shipyard International have signed a joint development project to design the world’s largest very large ammonia carrier (VLAC). The design of the 100,000-cubic-metre vessel has been assessed in line with LR’s Structural Design Assessment and prescriptive analysis. The gas carrier will have an independent IMO Type B tank for safe carriage of the chemical. Zero-emissions operations The cargo ship, which will be 7,800 dwt, is designed to transport timber from Norway to Europe “As major economies look to co-fire ammonia in their coal power stations to reduce the CO2 footprint of their national energy mix, shipping will play a key role in distributing clean hydrogen-based commodities such as ammonia, thereby supporting nations to meet their Paris Agreement commitments," says LR's Chief Executive Nick Brown. Furthermore, a partnership of companies from Norway has ordered a pioneering short-sea cargo ship that will advance the industry’s ability to provide zero-emissions operations. The cargo ship, which will be 7,800 dwt, is designed to transport timber from Norway to Europe and will be the first to operate on ammonia and electricity. Amogy’s ammonia-to-electrical power system A start-up company focusing on ammonia-to-power technology, Amogy, demonstrated the first tugboat powered by its cracking technology just short of the fourth anniversary of the company’s launch. The trip of a 67-year-old tug along a tributary of New York State’s Hudson River is part of the company’s works to develop and commercialise its technology to decarbonise the most difficult industries. Amogy’s ammonia-to-electrical power system splits, or “cracks,” liquid ammonia into its base elements of hydrogen and nitrogen. The hydrogen is then funnelled into a fuel cell, generating the power for the vessel. Research points to the risks of ammonia The chemical, made of hydrogen and nitrogen, can also be burned as a zero-carbon fuel Today and in the future, ammonia, a main component of many fertilisers, can play a key role in a carbon-free fuel system as a convenient way to transport and store clean hydrogen. The chemical, made of hydrogen and nitrogen, can also be burned as a zero-carbon fuel. However, new research led by Princeton University scientists illustrates that even though it may not be a source of carbon pollution, ammonia's widespread use in the energy sector could pose a grave risk to the nitrogen cycle and climate without proper engineering precautions. Use of ammonia U.S. National Science Foundation (NSF)-supported research found that a mismanaged ammonia economy could ramp up emissions of nitrous oxide, a long-lived greenhouse gas around 300 times more potent than carbon dioxide and a major contributor to the thinning of the stratospheric ozone layer. The use of ammonia could lead to substantial emissions of nitrogen oxides, a class of pollutants that contribute to the formation of smog and acid rain. And it could directly leak fugitive ammonia emissions into the environment, forming air pollutants, impacting water quality and stressing ecosystems by disturbing the global nitrogen cycle. Negative impacts of an ammonia economy The researchers found that the potential negative impacts of an ammonia economy "We have great hope that ingenuity and engineering can help reduce our use of carbon-based energy sources," said Richard Yuretich, a program director in NSF's Division of Earth Sciences. "But caution is advised because of unintended environmental spillover effects that may result from new technology." The researchers found that the potential negative impacts of an ammonia economy may be minimised with proactive engineering practices, but the possibility of risks should not be taken lightly. Addressing an inconvenient reality As interest in hydrogen as a zero-carbon fuel has grown, so too has an inconvenient reality: It is notoriously difficult to store and transport over long distances, requiring storage at either temperatures below -253 degrees Celsius or at pressures as high as 700 times atmospheric pressure. Ammonia, on the other hand, is much easier to liquify, transport and store, and capable of being moved around similarly to tanks of propane. Nonetheless, the cycle of nitrogen is delicately balanced in Earth's critical zone, and extensive research must be undertaken to investigate the repercussions of ammonia combustion and to develop new methods to minimise the risks. Challenges of ammonia as a maritime fuel Here's a breakdown of the key challenges of using ammonia for maritime fuel: Toxicity and Safety: For human health, ammonia is highly toxic, posing a serious risk to human health through inhalation or skin contact. This necessitates stringent safety protocols, advanced leak detection systems, and thorough crew training. Relating to the environment, leaks can also harm aquatic ecosystems, requiring robust containment and mitigation measures. Combustion Challenges: Ammonia's combustion characteristics are less favourable than traditional fuels, requiring modifications to engine design and potentially the use of pilot fuels. Emissions: Combustion can produce nitrogen oxides (NOx) and nitrous oxide (N2O), both of which are harmful pollutants. Mitigating these emissions is crucial. "Ammonia slip" is also a concern, in which unburnt ammonia is released. Infrastructure and Supply Chain: Establishing a global network of ammonia bunkering infrastructure is a massive undertaking, requiring significant investment and coordination. Scaling up "green ammonia" production, using renewable energy, is essential for its sustainability. This requires a robust and reliable supply chain. Storage: Ammonia has specific storage requirements, and onboard storage systems must be designed for safety and efficiency. International Standards Needed: Consistent and comprehensive international regulations and standards are needed for the safe handling, transportation, and use of ammonia as a marine fuel. While the IMO is developing Guidelines, complete and ratified rules are still needed. Economic challenges: "Green ammonia" is currently more expensive than traditional fuels, although costs are expected to decrease as production scales up. Significant investments are needed in research, development, and infrastructure to make ammonia a viable maritime fuel. Also, dedicated ammonia-fueled engines are still under heavy development, and do not have widespread availability. The path to commercialisation Overcoming the variety of technical and other obstacles will require collaboration among governments, industry stakeholders, and research institutions. The timeline for ammonia deployment in maritime applications is actively unfolding, with key milestones happening now and soon. 2025 marks the first trials of two-stroke, ammonia dual-fuel engines on oceangoing ships. Engine manufacturers like MAN Energy Solutions and WinGD are progressing with their engine development, with initial deliveries soon. These pilot projects are crucial for gathering real-world data and building confidence in ammonia as a marine fuel. Development of comprehensive regulations As the maritime industry faces, ammonia is hoped to play a growing role in the fuel mix Gradual commercialisation will follow in the late-2020s as the technology matures and the infrastructure develops. The focus will be on refining engine technology, improving safety protocols, and establishing bunkering facilities in key ports. Wider adoption will likely follow in the 2030s, depending on factors such as the cost of green ammonia, the development of comprehensive regulations, and the expansion of the global supply chain. As the maritime industry faces increasing pressure to decarbonise, ammonia is expected to play a growing role in the fuel mix. Future of maritime It's likely that a combination of ammonia and other alternative fuels and technologies will be used in the future of maritime. Alternatives include methanol, liquid natural gas (LNG), hydrogen, biofuels, electric propulsion, and even nuclear power. Ammonia is a strong contender, bit it faces stiff competition from other promising technologies. The maritime industry's transition to a sustainable future will likely involve a diverse mix of fuel solutions.
Trusted by more than 3,000 ships worldwide, NAPA’s Safety Solution software has promoted ship safety and operational efficiency for 35 years, working closely with customers. NAPA's solutions aim to positively impact the maritime industry by simplifying and streamlining onboard and shoreside operations through digitalisation, reducing errors and workload for seafarers, enhancing safety, and enabling more sustainable decision-making. Paper-based system challenges “Historically, the maritime market has relied heavily on paperwork for various processes, including log-keeping, work permits, and regulatory reporting,” says Tommi Vihavainen, NAPA's Director of Development at Safety Solutions. “This reliance on paper-based systems led to numerous challenges, such as time-consuming administrative tasks, increased risk of errors, difficulty in data aggregation and sharing, and limited visibility for shoreside teams.” Software and data services NAPA's software for ship design is used by over 90% of new vessels built by NAPA's customers NAPA provides software and data services for ship design and operations to enable a safer, more sustainable, and future-proof maritime industry. NAPA's software for ship design is used by over 90% of new vessels built by NAPA's customers and is considered the global de facto standard in shipbuilding. NAPA's product line On the ship operations side, NAPA's product line includes NAPA Stability next-gen loading computer; NAPA Emergency Computer to provide clarity on ship vulnerability in critical moments; NAPA Permit to Work, which digitalises work permits and approval; and NAPA Fleet Intelligence, a cloud-based platform to enable shoreside teams to handle fleet safety, compliance, and optimisation. NAPA Logbook (along with the NAPA Status Board and Checklists) helps make electronic record-keeping, reporting, and compliance easy and error-free. Digitisation “Digitisation has transformed the management of information and data onboard vessels by automating tasks, standardising formats, and enabling real-time data sharing between ship and shore,” adds Vihavainen. “This has led to significant improvements in efficiency, safety, and compliance.” Efficiency, safety, and compliance Cloud-based platforms enable centralised data collection, allowing shoreside teams to monitor vessel operations For example, electronic logbooks automate data entry, reduce errors, and facilitate easy regulatory compliance. Digital work permit systems streamline approval processes, enhance communication, and provide real-time visibility into ongoing work, improving safety and inter-department coordination. Cloud-based platforms enable centralised data collection, allowing shoreside teams to monitor vessel operations and performance, identify trends, and make informed decisions for optimised operations. Proactive approach to safety at sea Digital ship stability systems, like NAPA Stability, can enable a proactive approach to safety at sea by providing real-time monitoring and analysis of a ship's stability parameters – for both intact and damaged stability. They integrate with a 3D model of the ship, known as a digital twin, which is based on data and models used during the ship design process. “These systems continuously monitor stability data, such as the vessel's metacentric height, and provide alerts if any IMO-set stability and loading criteria are unmet,” says Vihavainen. Real-time awareness “This real-time awareness allows for early detection of potential risks and facilitates timely corrective actions to maintain stability and ship safety in all conditions." Additionally, these systems can simulate different scenarios and provide decision support to the crew and shoreside teams in case of emergencies, such as grounding or damage to the hull, allowing for a more informed and proactive response. Cloud-based monitoring unlocks By analysing this data, shoreside teams can identify trends, benchmark performance, and make decisions Cloud-based performance monitoring solutions can unlock new operational efficiencies in the maritime market by providing insights in real-time, as well as collecting historical data for later analysis. NAPA’s onboard solutions, for example, can collect data from various sources, like all logbook data, such as a deck, navigational data, stability data, engine management systems, HVAC, tank data, waste, and water management, as well as other relevant onboard sensors. By analysing this data, shoreside teams can identify trends, benchmark performance, and make data-driven decisions to optimise various aspects of operations, including fuel efficiency, waste and water management, engine performance, and so on. Operational efficiency “The cloud-based nature of these systems enables seamless data sharing and collaboration between shipboard and shoreside teams, facilitating real-time monitoring, communication, and support,” says Vihavainen. “This accessibility to data and insights allows for more informed decision-making, proactive rectifications in operational practices, maintenance, and continuous improvement in operational efficiency.” Supporting shipping’s transition to decarbonisation The global maritime industry, and seafarers in particular, are grappling with new ways of working to support shipping’s decarbonisation transition. A recent survey by the International Seafarers Welfare and Assistance Network (ISWAN) revealed that 54% of seafarers reported an increase in their workloads, 44% said they are feeling higher levels of stress, and 33% fear potential criminalisation due to complex reporting requirements. NAPA Logbook By enabling data to be exchanged between systems, teams can enhance situational awareness Digital, integrated solutions like NAPA Logbook, through NAPA Fleet Intelligence, allow teams to tackle these issues by doubling down on automation, thereby minimising errors saving time, and offering a holistic approach to data management, operational safety, and efficiency. By enabling data to be exchanged between systems, teams can enhance situational awareness and make better-informed decisions on critical operational matters and regulatory compliance, with greater speed and accuracy, as the platform also gives a centralised data overview. Benefits Vihavainen says centralised data collection through platforms also benefits operations by: Providing a holistic view of fleet operations: 24x7 monitoring and real-time situational awareness at a granular level - per ship, per voyage, per leg. This comprehensive overview allows for better decision-making regarding safety, efficiency, and compliance. Facilitating data-driven insights: By analysing the collected data, operators can identify trends, benchmark performance, and implement strategies for continuous improvement. Enabling better support from the shoreside without the need for additional communications. Optimised Voyage Planning: By combining real-time weather data with historical performance data, operators can plan more efficient and safer routes, especially for cruise customers during the hurricane season, for instance. Predictive Maintenance: Analysing data from various onboard systems can help predict potential equipment failures, allowing for proactive maintenance and reducing downtime. Improving record keeping and promoting safety NAPA Logbook is an electronic logbook solution that aims to improve record keeping, simply shipboard admin work, and promote safety onboard vessels. It is approved by over 20 major flag states and DNV and ClassNK, and it is trusted by over 12,000 users globally. NAPA Logbook improves record-keeping and compliance by: Automating data entry, reducing seafarer workload: The system automatically fills in data for log entries, reducing the administrative burden on the crew. Standardising formats, reducing chances of mistakes: NAPA Logbook ensures that all log entries adhere to the required formats, minimising errors, and inconsistencies. Simplifying reporting: The system facilitates the easy generation of reports for various regulatory requirements, such as EU-MRV, MARPOL, ESG, and CII. Logbook integration For instance, with the new voyage reporting functionality, the NAPA Logbook reduces the administrative burden of regulatory compliance and covers the monitoring systems EU-MRV (Monitoring, Reporting and Verification), and the IMO-DCS (Data Collection System). The digital platform enables the integration of logbooks with regulatory reporting; data is automatically shared with shoreside teams, via NAPA Fleet Intelligence, as well as with the verifier, in this case, DNV Emission Connect, in near real-time. End-to-end compliance The platform goes beyond normal electronic logbook systems and can submit data for verification to DNV The platform goes beyond normal electronic logbook systems and can submit data for verification to DNV, as well as other relevant stakeholders in the supply and emissions chain, in a format that meets all requirements. This provides end-to-end compliance support, removes duplication of work, and offers invaluable time savings for the crew which would otherwise not be possible. 14% reduction Here is a case example: Anthony Veder, a gas shipping company that implemented the NAPA Logbook in 2023 reports that it has already cut 2000 administrative hours per vessel – a 14% reduction. This time savings is not only from automated entry but also from automated reporting. With the initial success of NAPA Logbook across Anthony Veder’s fleet, the company is ramping up digitalisation to ease seafarer workload, boost morale, and reduce the margin for error. Digital tools can help reduce the administrative workload onboard and contribute to the accuracy of reporting, which is becoming increasingly important with regulations like the EU ETS and FuelEU Maritime. Replacing paper-based work permitting NAPA Permit to Work is a digital system that replaces the traditional paper-based work permit process for hazardous tasks onboard. NAPA Permit to Work has been developed through close collaboration with customers, such as Carnival Cruise Line and Virgin Voyages, to ensure it meets their specific needs and safety management system guidelines. The system allows for customisation according to each operator's unique processes. Miscommunication to mishaps Hazardous tasks are managed through a mase of manual checklists and paperwork prone to delays Traditionally, hazardous tasks are managed through a mase of manual checklists and paperwork prone to delays, oversight, and miscommunication – leading to mishaps. According to data from InterManager, 55% of accidents in the past 28 years have happened during planned work, with many incidents concentrated in high-risk areas like oil tanks and holds. Permit-to-work process Digitising the permit-to-work process can dramatically reduce the chances of human error, potentially preventing accidents before they occur. Apart from increasing efficiency, these digital permits also help ensure every step of the process is completed correctly and provide real-time visibility of high-risk tasks for both crews onboard and shoreside teams. This is especially important for newer seafarers, many of whom have joined the industry after the pandemic. They offer critical support for those still gaining experience, reducing the risk of accidents. Additionally, digitalising the process results in: Streamlined work process: The digital system eliminates the need for physical forms and signatures, saving time and reducing administrative burden. Comprehensive digital safeguards: The system acts as a checklist, ensuring that all necessary safety checks are completed before the start of any job. Enhanced communication and coordination: The system automatically notifies relevant departments and personnel with real-time status updates of ongoing work, improving coordination and transparency. Real-time monitoring and visibility: Both shipboard and shoreside teams have real-time visibility into ongoing work, enabling proactive safety management and faster response in case of issues. Benefits for shoreside teams NAPA Permit to Work provides shoreside teams with better fleet-wide visibility of ongoing work and conditions, enabling a proactive approach to safety and maintenance. This real-time data transparency allows for more efficient resource allocation, improved coordination of maintenance activities, and faster response to potential issues, ultimately leading to enhanced operational efficiency and reduced downtime. Comprehensive digital checklist NAPA Permit to Work will act as a comprehensive digital checklist The influx of new seafarers with limited experience post-pandemic presents challenges for the maritime industry. These challenges include increased workloads, higher stress levels, and potential safety risks due to unfamiliarity with complex tasks and procedures. Here, the NAPA Permit to Work will act as a comprehensive digital checklist to help seafarers ensure that no safety-critical steps are missed. Virtual guide and augments The system is designed so that no digital form is accepted unless all required safety checks are completed before the start of any job, significantly reducing the risk of oversight. Post-COVID, a large proportion of crew working aboard cruise ships are on their first contract with little at-sea experience. This functionality provides a virtual guide and augments previous training, eases handovers, and minimises the margin for error. Safety and efficiency As the maritime industry shifts toward a future marked by multi-fuel technologies and stringent environmental regulations, the operational demands placed on crews will only increase. But within this growing complexity lies an opportunity to rethink approaches to safety and efficiency. “Rather than overwhelming seafarers with more screens and systems, we need to harness digital tools and data in ways that simplify—not complicate—their work environments,” says Vihavainen. Expanding capabilities of digital tools When harnessed properly, it can lead to much bigger and newer areas of operational efficiency It is a misconception that solutions like NAPA Logbook and NAPA Stability only help with ship safety, data recording, and compliance. With cloud technology, the power of these digital tools extends far beyond their traditional roles, unlocking vast amounts of previously untapped data—up to 90% of ship data typically remains onboard, unutilised. This data spans everything from engine performance, and HVAC to waste, water, and tank management. When harnessed properly, it can lead to much bigger and newer areas of operational efficiency than achievable today. Real-time data sharing “By automating the collection and analysis of this data in real-time, and sharing it with shoreside teams, we also enable better ship-and-shore collaboration,” says Vihavainen. “As the complexity of modern maritime operations grows, cloud connectivity has become a critical tool in bridging the gap between onboard crews and shoreside teams.” Proactive voyage monitoring By allowing real-time communication and data sharing, shoreside teams can provide invaluable support in areas ranging from stability management and emergency response to proactive voyage monitoring and machinery issue resolution. “This level of collaboration is reshaping how we approach safety and efficiency at sea,” says Vihavainen. “These advances are more than just technological upgrades—they are transforming the relationship between seafarers and their shoreside colleagues.”
Case studies
San Francisco-based maritime technology company - Sofar Ocean announces a partnership with the U.S. Naval Meteorology and Oceanography Command’s (CNMOC) Fleet Weather centres in Norfolk (FWC-N) and San Diego (FWC-SD). Wayfinder platform FWC-N and FWC-SD, the Navy’s two primary weather forecasting centres, are piloting Sofar’s Wayfinder platform to support the routing of naval vessels at sea. The FWCs are utilising Wayfinder to identify safe and efficient route options powered by real-time ocean weather data for Military Sealift Command (MSC) ships. Situational awareness Tim Janssen, Co-Dounder and CEO of Sofar, said, "Wayfinder will empower the Navy to enhance situational awareness at sea and leverage data-driven optimisation to continuously identify safe and efficient routing strategies." He adds, "Powered by our real-time ocean weather sensor network, Wayfinder will help the Navy scale its routing operations to support a heterogeneous fleet operating in conditions made more extreme by the effects of climate change." CRADA The platform displays real-time observational data from Sofar’s global network of Spotter buoys The Navy is evaluating Wayfinder under CNMOC and Sofar’s five-year Cooperative Research and Development Agreement (CRADA) signed in July 2023. Wayfinder reduces manual tasks for forecasters and routers by automatically generating a forecast along a vessel’s route. The platform displays real-time observational data from Sofar’s global network of Spotter buoys to reduce weather uncertainty for route optimisation, and predict unwanted vessel motions during a voyage. Real-time wave and weather observations The availability of accurate real-time wave and weather observations helps Captains and shoreside personnel validate forecast models and examine multiple route options more efficiently, streamlining a historically complex and arduous process. Lea Locke-Wynn, Undersea Warfare Technical Lead for CNMOC’s Future Capabilities Department, said, "A key focus area for the Naval Oceanography enterprise is fostering a culture of innovation through collaboration with our commercial partners." Vessel-specific guidance Lea Locke-Wynn adds, "Our ongoing CRADA with Sofar Ocean is a perfect example of how our partnerships can leverage the leading edge in industry to further Department of Defence operations." As the number of naval vessels at sea, including experimental and autonomous ships, continues to increase, forecasters and routers will have less time to spend manually producing vessel-specific guidance. Automated forecast-on-route guidance More efficient routing empowers FWC personnel to focus on challenging, mission-critical tasks Wayfinder helps fill this operational gap, enabling FWC-N and FWC-SD to more efficiently support a large fleet in real-time with automated forecast-on-route guidance. More efficient routing empowers FWC personnel to focus on challenging, mission-critical tasks that require their unique expertise. Streamlined decisions Captain Erin Ceschini, Commanding Officer, FWC-SD, stated, "By using Wayfinder, we’re able to better visualise our ships’ routes, and make safer and more streamlined decisions on route, speed, and heading." Captain Erin Ceschini adds, "Wayfinder has the potential to be a critical component of our day-to-day operations and a key driver of safe routing as we contend with an increasingly unpredictable weather landscape."
The accuracy of AIS data used to track ship movements is vital for the analysis of vessel performance in areas such as fuel consumption. OrbitMI has therefore collaborated with Maritime Data on a joint project to enhance the screening of AIS data providers so it can deliver the best quality data for clients. Orbit vessel performance platform “We are continuously striving to optimise data inputs for users of our newly upgraded Orbit vessel performance platform to improve business decision-making." "With this goal in mind, we engaged Maritime Data as a trustworthy partner to contribute its specialist expertise in data procurement for the industry,” says OrbitMI’s Chief Marketing Officer David Levy. Assuring the quality of data inputs Maritime Data supports companies in the maritime ecosystem from concept to contract Maritime Data is a UK-based start-up founded in 2022 by Co-Founders Rory Proud and James Littlejohn with a mission to address the difficulties in sourcing, evaluating, and buying maritime data by acting as a specialised intermediary between buyer and supplier. As a data broker, Maritime Data supports companies in the maritime ecosystem from concept to contract. This enables clients to quickly understand all available solutions relevant to their requirements, evaluate comparable options, and contract with their suppliers of choice. All to minimise the effort required and give time back to the people building solutions needed to tackle the industry's biggest challenges. Buying data is made easier. Accurate customer service Backed by more than 15 years of experience in the sector, Maritime Data has built up an extensive partner network of over 50 maritime intelligence suppliers and 200-plus product offerings in areas such as vessel tracking, emissions calculation, seaborne cargo flows, risk and compliance, port activity, trade statistics, weather, and vessel ownership. “The quality of data being inputted into any model, process, or technology will have a meaningful impact on output,” explains Maritime Data’s Co-Founder James Littlejohn. "It is therefore essential for maritime technology companies to meaningfully evaluate all of their data inputs to ensure their solution provides the most accurate service for their customers." Tackling sourcing challenges Real-time data generated by the AIS is considered the X-axis for any evaluation of vessel operations The joint project has focused on tackling the challenges of acquiring the right AIS data arising from discrepancies in datasets offered by various vendors that make assessment and evaluation difficult for data buyers. Real-time data generated by the Automatic Identification System (AIS) is considered the X-axis for any evaluation of vessel operations and is a fundamental data layer for performance monitoring as it shows position, course, and speed, which can be combined with weather data to optimise operations, according to James Littlejohn. However, AIS is extremely data-heavy with hundreds of millions of data points being generated by thousands of vessels across the globe every day, which requires commensurately massive computational resources to ingest and analyse this data. New vendor evaluation protocol Under the joint project, Maritime Data conducted a comparative assessment of four leading AIS data providers using a new, specially developed evaluation protocol to ascertain the quality of their respective offerings based on carefully designed criteria. Maritime Data was able to take samples of a week of AIS data from each of the four providers and measure each dataset against various benchmarks provided by OrbitMI to help determine the coverage, accuracy and frequency of the respective feeds. A segment of these samples was then taken and split out over 80 different geolocations that were visualised as polygons on a map to show geographical coverage. Heavyweight analytics Independent validation of the supplier selection process enabled this to be conducted more quickly James Littlejohn points out that conducting this process of comparison and evaluation with such vast amounts of data would entail a lot of time and resources for a maritime technology firm such as OrbitMI, causing opportunity cost, while it took Maritime Data about a month to complete the analysis and this time is likely to be shortened in future as the process becomes more efficient. He says that independent validation of the supplier selection process enabled this to be conducted more quickly and without bias in favour of any one data vendor. “The outcome of the process was exactly as we expected and piloting this tool with OrbitMI has given us a springboard for further development and application of the selection protocol. This enabled OrbitMI to proceed with a decision on AIS sourcing secure in the knowledge that the data would fulfill the needs of its customers,” James Littlejohn says. Selecting the ideal AIS data provider At the end of the process, OrbitMI selected Lloyd's List Intelligence as its AIS data provider. “Lloyd's List Intelligence has been a long-time and valued partner of ours,” says Ali Riaz, OrbitMI's CEO. “The quality and versatility of their data offerings, assurances of data accuracy, customer service, and commitment to collaboration compared to the other offerings were unbeatable.” This decision aligns with Lloyd's List Intelligence's strategic vision for the industry. A collaborative, connected approach Tom Richmond, Head of Software & Technology Sales at Lloyd's List Intelligence, elaborates, “Working with innovators like OrbitMI is part of our strategic plan to help the shipping industry move beyond siloed thinking and kick-start a more collaborative, connected approach to integrating seaborne trade in the global supply chain." "We’re happy to support innovation with high-quality products at a price point that stimulates collaboration in the sector.” AIS data quality assurance OrbitMI’s David Levy concludes, “This project demonstrates we are prioritising data quality for our clients by harnessing the power of partnership with a major player." "The AIS data quality assurance process piloted by OrbitMI with Maritime Data will benefit users of the new Orbit platform by ensuring optimised and reliable data inputs covering the global fleet.”
Korea Marine Transport Company Ship Management (KMTC SM) has reported annual fuel savings worth approximately US$540,000 in total after installing Accelleron’s digital engine optimisation solution Tekomar XPERT on 12 Panamax vessels. The fuel savings enabled KMTC SM to reduce its CO2 emissions by about 4,200 tons. Tekomar XPERT delivers engine optimisation recommendations based on thermodynamic insights that aim to bring engines back to the operating performance achieved at “new” conditions. The solution can be applied to any engine and turbocharger make. KMTC SM followed the advisory from Tekomar XPERT, tracked engine performance and benchmarked engines and vessels through Tekomar XPERT’s web portal (Loreka). Carbon Intensity Indicator (CII) ratings The reduced emissions will translate to better CII ratings and lower exposure to carbon pricing KMTC Ship Management General Manager of Environmental Technology, Jin-Seob Lee, said: “Based on the big savings on fuel cost and emission reduction, we aim to install Tekomar XPERT on our remaining 16 self-managed vessels, and will be recommending its installation on 22 other vessels managed by third parties.” Accelleron anticipates that KMTC’s fuel bill will be reduced by around US$1.3 million a year when Tekomar XPERT is deployed across all 50 vessels. The reduced emissions will translate to better Carbon Intensity Indicator (CII) ratings and lower exposure to carbon pricing, including the EU Emissions Trading System, which will apply to shipping from 2024. KMTC SM’s own measurements KMTC SM was able to track improvements in performance thanks to intuitive indicators and actionable insight from Tekomar XPERT. The reduced fuel consumption at the end of the 12-month period highlighted a significant increase in vessel performance over the year. This was verified by KMTC SM’s own measurements. Accelleron Global Head of Sales & Operations, Shailesh Shirsekar, said: “Efficient engines are one of the keys to reducing fuel costs, emissions and carbon price exposure, enabling optimisation without impact on vessel operation. With simple guidance from Tekomar XPERT, ship operators can ensure that the engines are running at their very best, laying the foundation for lower lifecycle costs as well as regulatory compliance.”
At Scheveningen Harbour in the coastal city of The Hague in the Netherlands, an AI-based video security system from Bosch Building Technologies is now ensuring that every single ship or boat entering or leaving the harbour is logged. The customised solution developed by Bosch together with its partner BrainCreators automatically registers and classifies shipping traffic. Intelligent security solution Until now, employees at the port control centre had to keep an eye on shipping traffic around the clock from the window of the control centre and manually record the 80 or so vessels that pass through the port every day. The city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen The reason for the investment in the intelligent security solution was the fear that criminals would seek alternative routes via smaller ports such as Scheveningen, now that large Dutch or Belgian ports such as Rotterdam and Antwerp have been more secure against smuggled goods for some time. This was reason enough for the city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen. Challenging task in Scheveningen Special conditions require individual solutions Most boats and ships entering the port of Scheveningen are not required to register and, unlike purely commercial ports such as Rotterdam, the port cannot simply be closed off. In addition to cargo ships, there are also fishing boats and private sailing yachts at anchor, with small dinghies and rowing boats cruising between them. Keeping track of the movement of goods in particular is therefore a challenging task in Scheveningen, where the video security system with intelligent video analysis installed by Bosch provides welcome support. Author's quote The requirements for this project were very specific because the shipping traffic not only had to be filmed" "The requirements for this project were very specific because the shipping traffic not only had to be filmed, but also registered and classified. The solution also had to provide information about the speed of travel," says Niels van Doorn, Senior Manager Solutions & Portfolio at Bosch Building Technologies in the Netherlands. "Standard software can't do that. Together with our partner, we have therefore developed an AI that can identify and classify ships of all kinds–from passenger ships and freighters to sailing yachts and inflatable boats." This data aids in identifying suspicious shipping movements. Flexidome IP starlight 8000i cameras No sooner said than done – and in the shortest possible time Development, planning and implementation only took around 12 months. Two intelligent video cameras at the mouth of the harbour now record the traffic. The specially developed AI classifies the ship types and registers them in a file. Due to the difficult lighting conditions in the port, the Flexidome IP starlight 8000i cameras from Bosch were chosen. They deliver detailed images even in challenging weather and lighting conditions and enable the staff in the control centre to see every detail, even in very bright or dark image sections. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen All boat identifiers are recorded, documented, stored and automatically provided with additional information on date and time, direction of travel and speed around the clock using AI. The streams from the cameras are fed directly into a video management system. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen. By analysing all the data, peak times, ship types, trends and deviations from the norm are determined. New video documentation "The dashboard gives staff an overview of all activities in the port. The software protects the privacy of the people recorded by making their faces unrecognisable. The new video documentation now provides solid evidence and helps to identify suspicious and unusual situations more quickly and effectively," says Ferry Ditewig, Business Development Manager at Bosch Building Technologies in the Netherlands. The video solution is also well equipped for future challenges and can be flexibly expanded as required: for example, additional information from external sources could be integrated, such as meteorological data, tides or the automatic identification system (AIS) for exchanging ship data.
Maersk Supply Service has selected the Fleet Data IoT platform from Inmarsat Maritime, a Viasat business, to help optimise the performance of its first vessel battery installation onboard Maersk Minder Offshore Supply Ship, in a solution that will also allow the owner to evaluate how best to optimise the use of zero-emission energy storage systems across its fleet. An end-user API seamlessly gathers data from onboard equipment, automatically organises it with time stamps, synchronises it, and uploads it to the customer’s visualisation tools, all presented in a user-friendly format. Real-time insight Beyond streamlining in-house reporting and analytics, the API makes data available to original equipment manufacturers (OEMs), such as VPS, whose data-driven decarbonisation system, Maress, provides real-time insight into vessel performance to support fuel savings and emissions reduction. Crucially, Maress will help Maersk evaluate the effectiveness of the battery system in terms of peak shaving and energy efficiency and determine the requirements for future battery installations for the rest of the fleet. Enhance vessel efficiency By providing an open platform for data analytics, Inmarsat enables Maress to deliver actionable insights" Sindre Bornstein, Chief Commercial Officer, of VPS Decarbonisation, said “If the maritime industry is to achieve its emissions-reduction targets, it will rely on transparency, smart use of data, and collaboration and the Maersk Minder project combines all three." Sindre Bornstein adds, "By providing an open platform for data analytics, Inmarsat enables Maress to deliver actionable insights, which in turn help Maersk Supply Service to enhance vessel efficiency in the short term and decarbonise its fleet through optimised battery-enabled operations in the long term.” Complete visibility With complete visibility into the performance of the vessel and its hybrid battery system, Maersk can adapt its operations swiftly to keep pace with evolving environmental regulations. Notably, one of Maersk’s clients has already stipulated the use of battery power in certain offshore operations. This underscores the competitive advantage gained by sharing real-time data on the impact of the Electric Storage System (ESS) on vessel efficiency and emissions with the charterers. Deployment of a battery system Sverre Vange, Energy Performance Manager, Maersk Supply Service, said “There are various economic and regulatory motivations for installing battery power on an offshore vessel, but charterer expectations are a particularly compelling factor." Sverre Vange adds, "In the years ahead, attracting charterers will increasingly rely on the deployment of a battery system so the ability to keep charterers informed of the system’s performance will be invaluable.” Saves time and money Vessels operating in Norwegian waters must reconcile NOx emissions data against a record of the type/location Automating data flows also frees seafarers up from manual NOx emissions reporting, added Vange, saving time and money, while yielding more accurate and consistent information. Vessels operating in Norwegian waters must reconcile NOx emissions data against a record of the type/location of offshore work done and ports called to establish their obligations under Norway’s NOx tax scheme. Fleet Data end-user API Richard Goudbeek, Technical Sales Manager, Digital at Inmarsat Maritime, said “Data by itself is not useful unless it is processed to obtain information. Data processing involves analysing data and reasoning to gain insight and turn the results into fact-based decision-making." Richard Goudbeek adds, "The Fleet Data end-user API allows Maersk to extract maximum value from available data and share it with OEMs and third parties like VPS. This collaboration is pivotal in developing actionable insights and advancing decarbonisation strategies within the industry.” Maersk Supply Service has been a long-standing Inmarsat customer, dating back to its fleet-wide implementation of Fleet Xpress in 2017.
From its foundation in 1959, Mitsubishi Ore Transport (MOT) has been committed to upholding the highest standards in maritime safety and security, and to delivering premium-quality marine transport services using advanced ship management technologies. Inmarsat’s Fleet Xpress As part of NYK, the future-oriented organisation operates a fleet of 17 vessels and seeks to harness the vast potential of an increasingly connected maritime ecosystem to realise its digitalisation and decarbonisation objectives. It was in line with these goals, and to accelerate the adoption of digital services on board its vessels, that MOT adopted Inmarsat’s Fleet Xpress across its fleet. Simple, convenient, and fast communication MOT needs to deliver high-quality services to its customers while advancing its digital transformation strategy Combining the high speeds of Inmarsat’s Global Xpress Ka-band network with unlimited backup from its FleetBroadband L-band service, Fleet Xpress provides the continuous connectivity MOT needs to deliver high-quality services to its customers while advancing its digital transformation strategy. Captain Gregario C. Ogatis, Master of the MOT-managed bulk carrier Santa Isabel, described Inmarsat’s connectivity solution as “very simple, convenient and fast”, adding that it allows onboard personnel to “communicate easily with shore”. Quick information exchange Building on Ogatis’s remarks, Tesuro Ideguci, Chief Engineer, MOT, commented, “Inmarsat’s Fleet Xpress has allowed us to communicate with external parties and receive information very quickly, which is extremely beneficial." "Thanks to Fleet Xpress, I believe the way we work on land and sea will change significantly in the future, and we will see improvements in all aspects of information exchange.” Synthetic virtual networks Fleet Xpress delivers bandwidth in segregated pipelines, with each essential service allocated its route As well as supporting fast and seamless business communications, Fleet Xpress helps crew members make the most of their free time by allowing them to keep in touch with family and friends and enjoy online entertainment on their own devices without interfering with mission-critical connectivity. Using synthetic virtual networks, Fleet Xpress delivers bandwidth in segregated pipelines, with each essential service allocated its own dedicated route to the user. The bandwidth used outside of these essential services also receives its own pipeline, ensuring connectivity for both business and leisure, and achieves the highest standards in speed, reliability, and security. Enhanced efficiency, reduced fuel consumption Santa Isabel also benefits from Inmarsat’s Fleet Data, a maritime Internet-of-Things (IoT) platform that provides full data ownership and access from a single customisable dashboard. Fleet Data transforms the way ship owners and managers collect, transfer, analyse, store, and share vessel data for quick performance-based and historical benchmarking across the fleet. These insights support enhanced decision-making for more efficient and sustainable operations. Fleet Data is available on the Fleet Edge platform – a versatile, fully integrated modular solution giving Santa Isabel a path to operational efficiency, decarbonisation, and enhanced crew welfare over the Fleet Xpress network. Improving operational efficiency IoT platform has reduced fuel consumption and helped to ensure operations run according to schedule Shunsuke Miyazaki, General Manager, of Mitsubishi Corporation (MC) Shipping, which owns Santa Isabel among other MOT-chartered or managed ships, commented, “In the trend towards global decarbonisation, the key is how to operate vessels more efficiently to reduce fuel consumption. We use Fleet Data to send information from the ship in real-time, and we leverage these insights to improve operational efficiency.” For the two MC-owned vessels already deploying Fleet Data, Miyazaki added, the IoT platform has reduced fuel consumption and helped to ensure operations run according to schedule. Connectivity with certainty As the maritime industry becomes increasingly digitalised, more and more shipping companies are embracing new technologies and upgrading their satellite communications services to enable digitalisation, decarbonisation, and crew connectivity. This is why so many shipping companies rely on the Fleet Xpress suite of services, all delivered through our world-pioneering satellite network. Digital service adoption Inmarsat’s services are built to deliver control over the entire connectivity ecosystem" “We are delighted to support Mitsubishi Ore Transport solutions in driving the adoption of digital services on board,” said Gert-Jan Panken, Vice President of Sales, Inmarsat. “Inmarsat’s services are built to deliver control over the entire connectivity ecosystem." Build-in competitive advantages "With Fleet Xpress, shipping companies like MOT gain access to a host of opportunities to optimise and drive efficiency, the ability to attract and retain the most talented crew, and the capacity to future-proof operations and build-in competitive advantages." "By providing a clear view of what satellite communications mean to your business today and tomorrow, Inmarsat offers connectivity with certainty.”


Round table discussion
Achieving optimal return on investment (ROI) for a maritime company involves a strategic combination of operational efficiency, revenue enhancement, cost control, careful financial management, attention to sustainability and regulatory compliance, and other factors. Given all the variables in play, profitability can be elusive, but our Expert Panel Roundtable has some ideas. We asked: How can maritime companies maximise return on investment (ROI)?