Rising costs
KR (Korean Register) is pleased to announce that Lee Jungkun, General Manager of KR’s Convention & Legislation Service Team, has been elected as the next Chair of the International Association of Classification Societies (IACS) Safety Panel, with a three-year term running from January 1, 2026, through December 31, 2028. The appointment was confirmed at the 91st IACS Council Meeting held in Beijing, China. IACS’s seven technical panels The Safety Panel is one of IAC...
ClassNK launches a new service, ‘ClassNK Fleet Cost Simulation’, as part of its ‘ClassNK Transition Support Services’, which aims to facilitate the maritime industry’s transition to decarbonised fuels. This new service estimates the cost impact of GHG emission reduction regulations, including IMO's mid-term measures, EU-ETS, and FuelEU Maritime on behalf of clients. This service provides the ‘ClassNK Fleet Cost Calculator’, a calculation tool that simu...
The global maritime surveillance market is projected to grow from $21.9 billion in 2023 to $ 42.7 billion by 2033. This growth is being driven by increasing global trade, maritime security concerns, and the adoption of advanced surveillance technologies such as radars, drones, and satellite monitoring systems. Moreover, the global shipping industry is now on the frontlines of a new kind of conflict — one defined by economic coerc...
Turkish shipowner, Susesea, has successfully upgraded the cylinder lubrication strategy across its fleet of six bulk carriers by adopting Chevron’s Taro® Ultra Advanced 40 (TUA 40). Working closely with Chevron Marine Lubricants and its regional distributor, Petrol Ofisi, Susesea has streamlined vessel operations and reduced cylinder oil feed rates by approximately 33 percent, delivering both technical and commercial benefits. MAN Mark 9 engines Susesea’s engineers rotated bet...
The London P&I Club has announced its financial results for 2024/25, reporting an operating surplus of US$21.3m, while also strengthening its free reserves to US$171.2m. Gross earned premium income increased 12% to reach US$159.8m. The Club’s combined ratio for the period was 101.7%, which contributed to an improved three-year weighted average combined ratio of 103.9%. Meanwhile, the investment return on assets under management and cash was 6.3%, contributing US$24.7m to the operating...
KR (Korean Register) has officially launched a joint working group to establish international standards for the safe discharge of toxic ammonia effluent generated from ammonia-fueled ships. The initiative brings together Korean major shipbuilders—HD Hyundai Heavy Industries (HD HHI), HD Korea Shipbuilding & Offshore Engineering (HD KSOE), HD Hyundai Samho, Samsung Heavy Industries (SHI), and Hanwha Ocean—as well as the Korea Testing & Research Institute (KTR), a national ce...
News
Swiss marine power company - WinGD is to deliver X-DF-A ammonia-fuelled engine designs for four newbuild medium gas carriers (MGC) to be built by HD Hyundai Mipo for Trafigura, a market pioneer in the global commodities industry. The 45,000 cubic.metres vessels will each be powered by a six-cylinder, 52-bore 6X52DF-A engine with high-pressure selective catalytic reduction. WinGD ammonia-carrying vessels The order is one of several that WinGD has received for ammonia-carrying vessels The Trafigura vessels are another indication of the scaling up of global carrying capacity as ammonia becomes an increasingly important energy carrier globally. The order is one of several that WinGD has received for ammonia-carrying vessels. WinGD VP Market Development - Benny Hilström, said: “Trafigura selected our technology based on our demonstration of X-DF-A’s development and strong performance indicators to date. With the first X-DF-A engine deliveries due in mid-2025, we will already have gathered significant construction and commissioning experience by the time these engines are delivered.” Characteristics of the X-DF-A test engine As reported recently, WinGD has already confirmed key combustion and performance characteristics for the X-DF-A on a test engine, with full-load running achieved with 5% pilot fuel consumption. Thermal efficiency is the same as for diesel engines, with significantly lower NOx, ammonia emissions at less than 10 parts per million (ppm) and N2O emissions less than 3 ppm. The engines for the new MGCs are scheduled to be delivered from early 2027 to early 2028.
EV Maritime, New Zealand’s pioneering electric ferry design and technology company, announced the launch of its first fully electric passenger ferry. The new vessel will operate between downtown Auckland and the suburb of Half Moon Bay. This is the first of the EVM200 class – a series of battery-electric fast ferries built using lightweight carbon fibre. Designed for urban public transport, the EVM200 offers service speeds of up to 25 knots and a range of up to 20 miles. Auckland Transport’s initiative EVM200 platform is part of Auckland Transport’s initiative to transition to a low-emission ferry fleet Developed with support from the New Zealand Government, the EVM200 platform is part of Auckland Transport’s initiative to transition to a low-emissions ferry fleet. Two vessels will enter service under this program. Each vessel accommodates up to 200 passengers on a fully enclosed main deck, with additional seating for 30 on the upper deck. Amenities include three restrooms – one of which is ADA-accessible – and a small onboard kiosk serving barista coffee, cold beer, and wine. Full electrical system integration EV Maritime led the ferry’s design, naval architecture, and project delivery, including full electrical system integration. Key components were sourced globally: battery storage from Freudenberg (USA), motors and power electronics from Danfoss (Finland), waterjets from HamiltonJet (New Zealand), and PLC systems from Attest (New Zealand). Hydrodynamic optimisation was achieved through collaboration with Emirates Team New Zealand, resulting in a low-drag, low-wash hull that ensures efficient operation at cruising speeds. Deployment of the new CharIN Megawatt Charging System The 10-mile (16 km) journey between downtown Auckland and Half Moon Bay takes about 35 minutes The ferry will also feature the world’s first maritime deployment of the new CharIN Megawatt Charging System (MCS). The 10-mile (16 km) journey between downtown Auckland and Half Moon Bay takes approximately 35 minutes. While the ferry’s batteries hold enough energy for a full round trip, the vessel will typically recharge during a 10-minute turnaround at the terminal, using two MCS inlets rated at 1.1MW each. Electric vessel manufacturers “We’re incredibly proud to launch this vessel and bring the EVM200 platform to Auckland,” said Michael Eaglen, CEO of EV Maritime. “It reflects our commitment to protecting the environment while maintaining the reliability and convenience of water-based public transport." "Our technology-transfer business model also supports local shipbuilders in becoming electric vessel manufacturers – boosting regional capability and growing confidence in sustainable solutions.” Hybrid-electric vessel EV Maritime is also expanding internationally. In North America, Christopher Mazzoni was appointed in 2024 to lead the company’s operations. Current projects include a hybrid-electric vessel for Angel Island Tiburon Ferry (San Francisco Bay Area), and a collaboration with AF Theriault in relation to ferries for Halifax Regional Municipality in Canada. The company is also active in Australia, Southeast Asia, and Europe, responding to growing global interest in clean maritime transport.
In a complex case highlighting the risks ship managers face from legacy vessel issues, the International Transport Intermediaries Club (ITIC) has successfully resolved a US$6 million claim against a ship manager for only a fraction of the original demand. The ship manager took charge of a ship over 12 years old under a SHIPMAN contract, albeit for just a short six-month duration. Despite the brief tenure, the manager faced a substantial claim alleging failure to identify and address pre-existing defects dating from previous owners and managers. Litigation risk of ITIC ITIC considered it prudent to settle the matter at a reasonable level if possible Although the allegations lacked a strong legal basis, with a litigation risk of at least 30%, ITIC considered it prudent to settle the matter at a reasonable level if possible. The high cost of litigation was estimated to exceed US$500,000. The manager, supported by ITIC, consistently maintained that they had acted responsibly by warning the shipowners not to proceed with the purchase, and by recommending necessary repairs which the shipowners ultimately disregarded. Minimal details of claimants The claimants initially provided minimal detail, instead relying on a demand letter to pursue a settlement. It was only after ITIC pushed back that they initiated arbitration and, five months later, finally submitted a formal claim. Mark Brattman, Claims Director at ITIC, remarked, “This claim was built on weak foundations. We stood firm, supported our member, and delivered a commercially sound outcome without compromising on principle.” Interpretation of the liability cap Central to the dispute was the interpretation of the liability cap under the SHIPMAN agreement Central to the dispute was the interpretation of the liability cap under the SHIPMAN agreement. While the claimants argued that there were three separate “events” triggering a triple cap of US$3.6 million, the manager rightly maintained that there was only a single event and, therefore, a single cap of US$1.2 million. Despite the claimant’s rejection of a settlement offer of US$3.6 million, ITIC successfully negotiated a resolution during mediation. The matter was settled for US$1.55 million, which was significantly lower than the potential litigation costs and claimant's demand. Additionally, ITIC covered legal costs amounting to US$43,605. Exposure to ship managers “This case is a stark reminder of the exposure ship managers can face from legacy issues outside their control,” said Brattman. “We are pleased to have reached a pragmatic and favourable outcome for our assured, avoiding prolonged arbitration while firmly protecting their legal position.”
Proteus Energy, headquartered in Singapore, has developed the Proteus® Maritime Fuel Cell Solution, a modular hydrogen fuel-based system for ports and vessels. The first offering is the Proteus®75. Each fuel cell stack is 75 kW output, and these can be combined for larger power requirements. Offshore support Symbio is jointly owned by global industrial groups Michelin, Stellantis, and Forvia The vessel types being targeted are harbour craft, and vessels in the coastal, offshore support, and in-land waterway segments. The technology has been developed in partnership with Symbio France, a world-renowned hydrogen fuel cell company with over 30 years' track record. Symbio is jointly owned by global industrial groups Michelin, Stellantis, and Forvia. High energy density solution "The maritime industry needs viable clean energy solutions today," said Dr. Lars Gruenitz, CEO of Proteus Energy. Dr. Lars Gruenitz adds, "We are providing a high energy density solution that is compact and lightweight, which is critical for vessels where space and weight considerations are imperative. This best-in-class system is the logical and most cost-effective choice to help operators make a quantum leap in their decarbonisation efforts." Proteus® Maritime Fuel Cell Solution The Proteus® Maritime Fuel Cell Solution can be delivered as a modular powerpack or customised and fitted into vessels. Benefits include: Zero tailpipe emissions Negligible noise or vibration Low maintenance cost due to few moving parts and no lubrication oil consumption Fast refuelling time compared to slower battery charging time Hydrogen fuel can be stored for long time periods without any loss versus batteries which lose energy (even if not in use) and need to be regularly recharged Proteus’ fuel cell technology also complements electric propulsion and offers a powerful solution for hybrid vessels by extending their range and easing the load on batteries, thus improving space efficiency and vessel performance. Proven on roads and now customised for the sea The Proteus® Maritime Fuel Cell Solution will be backed by a two-year performance guarantee from Symbio France. Symbio’s systems have already logged millions of kilometres powering cars, buses and commercial trucks across Europe. Now, that same rigorous, road-tested performance is being deployed at sea with added protections for marine operating conditions. Automotive production line precision Symbio tests over 2,000 fuel cell membranes each year-enabling faster upgrades The fuel cell stacks are produced at Symbio’s gigafactory in Lyon, France, using state-of-the-art robotic assembly systems capable of producing thousands of units annually. This high-throughput capability ensures that Proteus can meet rising demand without sacrificing quality-something only established and proven hydrogen fuel cell manufacturers can claim. What also sets Proteus apart is its ability to bring economies of scale, continuous R&D, and tried and tested reliability from land transport into the marine environment. For example, Symbio tests over 2,000 fuel cell membranes each year-enabling faster upgrades and long-term performance enhancements – something new players in the market are not able to do. Hydrogen fuel tank storage To provide a convenient fuel storage option, Proteus also offers state-of-the-art high-pressure hydrogen storage tanks developed with its partner Forvia, a major global components and technology company. The DNV type-approved tanks, which are already available for delivery, offer a safe and easy way to store hydrogen onboard vessels and will be produced on an industrial scale. In addition, Proteus works with port operators to provide them with customised refuelling solutions and infrastructure. Deployment roadmap “As regulators push towards zero emissions, ports and vessel operators face immense pressure to act now. With our proven technology and system designed for practical integration, we can assist our customers to meet their emission targets ahead of schedule and future-proof their business,” said Dr Gruenitz. The Proteus® Maritime Fuel Cell Solution is expected to be available for delivery beginning January 2026, with type approval from DNV anticipated before the end of this year. Proteus is ready to work with customers now.
Unseenlabs, the pioneer in space-based radio frequency (RF) detection, announces the upcoming launch of its latest satellite, BRO-18. This new asset will expand Unseenlabs’ existing constellation and further strengthen its operational capabilities in tracking illegal and unreported maritime activity. The launch is scheduled for NET June 2025 aboard SpaceX’s Transporter-14 mission from Vandenberg Space Force Base in California, with the support of Exolaunch. A concrete response to global maritime challenges Unseenlabs continues to position itself as a trusted partner for both public and private stakeholders BRO-18 will increase the revisit rate of Unseenlabs’ constellation, which is already operational across key strategic maritime zones worldwide. With the ability to precisely detect RF signals — even without cooperative transponders — Unseenlabs provides decision-makers with a unique capability to monitor, identify, and anticipate suspicious behaviours at sea. From maritime security and illegal fishing to environmental risk prevention and insurance risk modelling, Unseenlabs continues to position itself as a trusted partner for both public and private stakeholders. Critical challenges of security "This new satellite strengthens our commitment to delivering high-quality, independent, and actionable data that supports strategic decision-making in an increasingly complex maritime environment," said Clément Galic, CEO and Co-Founder of Unseenlabs. He adds, "BRO-18 is part of our continued scale-up strategy, designed to support maritime actors facing critical challenges of sovereignty, security, and transparency." Sovereign technology designed for action Unseenlabs can detect and geolocate RF emitters at sea with high precision, day or night Thanks to its proprietary single-satellite technology, Unseenlabs can detect and geolocate RF emitters at sea with high precision, day or night, regardless of weather conditions. This sovereign, agile approach provides governments, NGOs, insurers, and maritime operators with fast, reliable, and immediately actionable data to inform their operational systems. Heading toward 2026: A multi-domain surveillance strategy With BRO-18, Unseenlabs continues to deploy its first constellation dedicated to maritime surveillance. In parallel, the company is designing a second RF constellation, set for launch in 2026, that will expand coverage to land, air, and space domains. This evolution will broaden operational use cases and establish Unseenlabs as a key provider of multi-domain electromagnetic intelligence.
ABS Chairman and CEO Christopher J. Wiernicki was honoured by The Seamen’s Church Institute (SCI), receiving the 2025 Silver Bell Award for lifelong service and outstanding leadership in the maritime industry. Lives of mariners and seafarers SCI is a nearly 200-year-old charity headquartered in New York that serves and protects the personal and professional lives of mariners and seafarers, both internationally and domestically, by partnering with the maritime industry to ensure dignity within the workplace and a safe working environment for seafarers and mariners. Wiernicki received the award at the 47th Annual Silver Bell Awards Dinner in New York City, attended by more than 600 guests. Unwavering commitment to safety “I am deeply honoured and profoundly humbled to receive this award, which has gone to so many outstanding pioneers of our industry. To me, safety has never been just a protocol or a checklist. Safety is synonymous with people. It’s about the lives we protect, the families we keep whole and the futures we safeguard. And nowhere is this more evident than at sea. Seafarers are the unsung heroes of our global economy." "They brave the elements, navigate uncertainty and carry the weight of the world’s commerce on their shoulders. They deserve not only our respect, but our unwavering commitment to their safety and well-being,” said Wiernicki.
Swiss marine power company - WinGD is to deliver X-DF-A ammonia-fuelled engine designs for four newbuild medium gas carriers (MGC) to be built by HD Hyundai Mipo for Trafigura, a market pioneer in the global commodities industry. The 45,000 cubic.metres vessels will each be powered by a six-cylinder, 52-bore 6X52DF-A engine with high-pressure selective catalytic reduction. WinGD ammonia-carrying vessels The order is one of several that WinGD has received for ammonia-carrying vessels The Trafigura vessels are another indication of the scaling up of global carrying capacity as ammonia becomes an increasingly important energy carrier globally. The order is one of several that WinGD has received for ammonia-carrying vessels. WinGD VP Market Development - Benny Hilström, said: “Trafigura selected our technology based on our demonstration of X-DF-A’s development and strong performance indicators to date. With the first X-DF-A engine deliveries due in mid-2025, we will already have gathered significant construction and commissioning experience by the time these engines are delivered.” Characteristics of the X-DF-A test engine As reported recently, WinGD has already confirmed key combustion and performance characteristics for the X-DF-A on a test engine, with full-load running achieved with 5% pilot fuel consumption. Thermal efficiency is the same as for diesel engines, with significantly lower NOx, ammonia emissions at less than 10 parts per million (ppm) and N2O emissions less than 3 ppm. The engines for the new MGCs are scheduled to be delivered from early 2027 to early 2028.
EV Maritime, New Zealand’s pioneering electric ferry design and technology company, announced the launch of its first fully electric passenger ferry. The new vessel will operate between downtown Auckland and the suburb of Half Moon Bay. This is the first of the EVM200 class – a series of battery-electric fast ferries built using lightweight carbon fibre. Designed for urban public transport, the EVM200 offers service speeds of up to 25 knots and a range of up to 20 miles. Auckland Transport’s initiative EVM200 platform is part of Auckland Transport’s initiative to transition to a low-emission ferry fleet Developed with support from the New Zealand Government, the EVM200 platform is part of Auckland Transport’s initiative to transition to a low-emissions ferry fleet. Two vessels will enter service under this program. Each vessel accommodates up to 200 passengers on a fully enclosed main deck, with additional seating for 30 on the upper deck. Amenities include three restrooms – one of which is ADA-accessible – and a small onboard kiosk serving barista coffee, cold beer, and wine. Full electrical system integration EV Maritime led the ferry’s design, naval architecture, and project delivery, including full electrical system integration. Key components were sourced globally: battery storage from Freudenberg (USA), motors and power electronics from Danfoss (Finland), waterjets from HamiltonJet (New Zealand), and PLC systems from Attest (New Zealand). Hydrodynamic optimisation was achieved through collaboration with Emirates Team New Zealand, resulting in a low-drag, low-wash hull that ensures efficient operation at cruising speeds. Deployment of the new CharIN Megawatt Charging System The 10-mile (16 km) journey between downtown Auckland and Half Moon Bay takes about 35 minutes The ferry will also feature the world’s first maritime deployment of the new CharIN Megawatt Charging System (MCS). The 10-mile (16 km) journey between downtown Auckland and Half Moon Bay takes approximately 35 minutes. While the ferry’s batteries hold enough energy for a full round trip, the vessel will typically recharge during a 10-minute turnaround at the terminal, using two MCS inlets rated at 1.1MW each. Electric vessel manufacturers “We’re incredibly proud to launch this vessel and bring the EVM200 platform to Auckland,” said Michael Eaglen, CEO of EV Maritime. “It reflects our commitment to protecting the environment while maintaining the reliability and convenience of water-based public transport." "Our technology-transfer business model also supports local shipbuilders in becoming electric vessel manufacturers – boosting regional capability and growing confidence in sustainable solutions.” Hybrid-electric vessel EV Maritime is also expanding internationally. In North America, Christopher Mazzoni was appointed in 2024 to lead the company’s operations. Current projects include a hybrid-electric vessel for Angel Island Tiburon Ferry (San Francisco Bay Area), and a collaboration with AF Theriault in relation to ferries for Halifax Regional Municipality in Canada. The company is also active in Australia, Southeast Asia, and Europe, responding to growing global interest in clean maritime transport.
In a complex case highlighting the risks ship managers face from legacy vessel issues, the International Transport Intermediaries Club (ITIC) has successfully resolved a US$6 million claim against a ship manager for only a fraction of the original demand. The ship manager took charge of a ship over 12 years old under a SHIPMAN contract, albeit for just a short six-month duration. Despite the brief tenure, the manager faced a substantial claim alleging failure to identify and address pre-existing defects dating from previous owners and managers. Litigation risk of ITIC ITIC considered it prudent to settle the matter at a reasonable level if possible Although the allegations lacked a strong legal basis, with a litigation risk of at least 30%, ITIC considered it prudent to settle the matter at a reasonable level if possible. The high cost of litigation was estimated to exceed US$500,000. The manager, supported by ITIC, consistently maintained that they had acted responsibly by warning the shipowners not to proceed with the purchase, and by recommending necessary repairs which the shipowners ultimately disregarded. Minimal details of claimants The claimants initially provided minimal detail, instead relying on a demand letter to pursue a settlement. It was only after ITIC pushed back that they initiated arbitration and, five months later, finally submitted a formal claim. Mark Brattman, Claims Director at ITIC, remarked, “This claim was built on weak foundations. We stood firm, supported our member, and delivered a commercially sound outcome without compromising on principle.” Interpretation of the liability cap Central to the dispute was the interpretation of the liability cap under the SHIPMAN agreement Central to the dispute was the interpretation of the liability cap under the SHIPMAN agreement. While the claimants argued that there were three separate “events” triggering a triple cap of US$3.6 million, the manager rightly maintained that there was only a single event and, therefore, a single cap of US$1.2 million. Despite the claimant’s rejection of a settlement offer of US$3.6 million, ITIC successfully negotiated a resolution during mediation. The matter was settled for US$1.55 million, which was significantly lower than the potential litigation costs and claimant's demand. Additionally, ITIC covered legal costs amounting to US$43,605. Exposure to ship managers “This case is a stark reminder of the exposure ship managers can face from legacy issues outside their control,” said Brattman. “We are pleased to have reached a pragmatic and favourable outcome for our assured, avoiding prolonged arbitration while firmly protecting their legal position.”
Proteus Energy, headquartered in Singapore, has developed the Proteus® Maritime Fuel Cell Solution, a modular hydrogen fuel-based system for ports and vessels. The first offering is the Proteus®75. Each fuel cell stack is 75 kW output, and these can be combined for larger power requirements. Offshore support Symbio is jointly owned by global industrial groups Michelin, Stellantis, and Forvia The vessel types being targeted are harbour craft, and vessels in the coastal, offshore support, and in-land waterway segments. The technology has been developed in partnership with Symbio France, a world-renowned hydrogen fuel cell company with over 30 years' track record. Symbio is jointly owned by global industrial groups Michelin, Stellantis, and Forvia. High energy density solution "The maritime industry needs viable clean energy solutions today," said Dr. Lars Gruenitz, CEO of Proteus Energy. Dr. Lars Gruenitz adds, "We are providing a high energy density solution that is compact and lightweight, which is critical for vessels where space and weight considerations are imperative. This best-in-class system is the logical and most cost-effective choice to help operators make a quantum leap in their decarbonisation efforts." Proteus® Maritime Fuel Cell Solution The Proteus® Maritime Fuel Cell Solution can be delivered as a modular powerpack or customised and fitted into vessels. Benefits include: Zero tailpipe emissions Negligible noise or vibration Low maintenance cost due to few moving parts and no lubrication oil consumption Fast refuelling time compared to slower battery charging time Hydrogen fuel can be stored for long time periods without any loss versus batteries which lose energy (even if not in use) and need to be regularly recharged Proteus’ fuel cell technology also complements electric propulsion and offers a powerful solution for hybrid vessels by extending their range and easing the load on batteries, thus improving space efficiency and vessel performance. Proven on roads and now customised for the sea The Proteus® Maritime Fuel Cell Solution will be backed by a two-year performance guarantee from Symbio France. Symbio’s systems have already logged millions of kilometres powering cars, buses and commercial trucks across Europe. Now, that same rigorous, road-tested performance is being deployed at sea with added protections for marine operating conditions. Automotive production line precision Symbio tests over 2,000 fuel cell membranes each year-enabling faster upgrades The fuel cell stacks are produced at Symbio’s gigafactory in Lyon, France, using state-of-the-art robotic assembly systems capable of producing thousands of units annually. This high-throughput capability ensures that Proteus can meet rising demand without sacrificing quality-something only established and proven hydrogen fuel cell manufacturers can claim. What also sets Proteus apart is its ability to bring economies of scale, continuous R&D, and tried and tested reliability from land transport into the marine environment. For example, Symbio tests over 2,000 fuel cell membranes each year-enabling faster upgrades and long-term performance enhancements – something new players in the market are not able to do. Hydrogen fuel tank storage To provide a convenient fuel storage option, Proteus also offers state-of-the-art high-pressure hydrogen storage tanks developed with its partner Forvia, a major global components and technology company. The DNV type-approved tanks, which are already available for delivery, offer a safe and easy way to store hydrogen onboard vessels and will be produced on an industrial scale. In addition, Proteus works with port operators to provide them with customised refuelling solutions and infrastructure. Deployment roadmap “As regulators push towards zero emissions, ports and vessel operators face immense pressure to act now. With our proven technology and system designed for practical integration, we can assist our customers to meet their emission targets ahead of schedule and future-proof their business,” said Dr Gruenitz. The Proteus® Maritime Fuel Cell Solution is expected to be available for delivery beginning January 2026, with type approval from DNV anticipated before the end of this year. Proteus is ready to work with customers now.
Unseenlabs, the pioneer in space-based radio frequency (RF) detection, announces the upcoming launch of its latest satellite, BRO-18. This new asset will expand Unseenlabs’ existing constellation and further strengthen its operational capabilities in tracking illegal and unreported maritime activity. The launch is scheduled for NET June 2025 aboard SpaceX’s Transporter-14 mission from Vandenberg Space Force Base in California, with the support of Exolaunch. A concrete response to global maritime challenges Unseenlabs continues to position itself as a trusted partner for both public and private stakeholders BRO-18 will increase the revisit rate of Unseenlabs’ constellation, which is already operational across key strategic maritime zones worldwide. With the ability to precisely detect RF signals — even without cooperative transponders — Unseenlabs provides decision-makers with a unique capability to monitor, identify, and anticipate suspicious behaviours at sea. From maritime security and illegal fishing to environmental risk prevention and insurance risk modelling, Unseenlabs continues to position itself as a trusted partner for both public and private stakeholders. Critical challenges of security "This new satellite strengthens our commitment to delivering high-quality, independent, and actionable data that supports strategic decision-making in an increasingly complex maritime environment," said Clément Galic, CEO and Co-Founder of Unseenlabs. He adds, "BRO-18 is part of our continued scale-up strategy, designed to support maritime actors facing critical challenges of sovereignty, security, and transparency." Sovereign technology designed for action Unseenlabs can detect and geolocate RF emitters at sea with high precision, day or night Thanks to its proprietary single-satellite technology, Unseenlabs can detect and geolocate RF emitters at sea with high precision, day or night, regardless of weather conditions. This sovereign, agile approach provides governments, NGOs, insurers, and maritime operators with fast, reliable, and immediately actionable data to inform their operational systems. Heading toward 2026: A multi-domain surveillance strategy With BRO-18, Unseenlabs continues to deploy its first constellation dedicated to maritime surveillance. In parallel, the company is designing a second RF constellation, set for launch in 2026, that will expand coverage to land, air, and space domains. This evolution will broaden operational use cases and establish Unseenlabs as a key provider of multi-domain electromagnetic intelligence.
ABS Chairman and CEO Christopher J. Wiernicki was honoured by The Seamen’s Church Institute (SCI), receiving the 2025 Silver Bell Award for lifelong service and outstanding leadership in the maritime industry. Lives of mariners and seafarers SCI is a nearly 200-year-old charity headquartered in New York that serves and protects the personal and professional lives of mariners and seafarers, both internationally and domestically, by partnering with the maritime industry to ensure dignity within the workplace and a safe working environment for seafarers and mariners. Wiernicki received the award at the 47th Annual Silver Bell Awards Dinner in New York City, attended by more than 600 guests. Unwavering commitment to safety “I am deeply honoured and profoundly humbled to receive this award, which has gone to so many outstanding pioneers of our industry. To me, safety has never been just a protocol or a checklist. Safety is synonymous with people. It’s about the lives we protect, the families we keep whole and the futures we safeguard. And nowhere is this more evident than at sea. Seafarers are the unsung heroes of our global economy." "They brave the elements, navigate uncertainty and carry the weight of the world’s commerce on their shoulders. They deserve not only our respect, but our unwavering commitment to their safety and well-being,” said Wiernicki.


Expert commentary
When the Ballast Water Management (BWM) Convention came into force in 2004, it was in response to a crisis we couldn’t afford to ignore—one where invasive aquatic species, carried silently in ships’ ballast tanks, were devastating marine ecosystems. Now, two decades later, compliance with this environmental safeguard is no longer optional—and yet, as recent industry findings reveal, record-keeping failures account for 58% of compliance issues. That’s not a technology problem. That’s a documentation problem —one rooted deeply in data management practices and crew training, where small oversights lead to documentation issues, that may cascade into costly compliance failures. And that’s precisely where digital systems excel, guiding crews clearly to avoid mistakes in the first place. New ballast regulations At the IMO’s 82nd Marine Environment Protection Committee (MEPC 82), new ballast water record-keeping regulations were approved, coming into effect from 1 February 2025. These updates mark a significant tightening of documentation standards—and they could catch unprepared shipowners off guard if not acted on promptly. Why ballast water record-keeping is back in the spotlight These new updates aim to change that—and they’re stricter, smarter, and more detailed than before While MEPC 82 made headlines for advancing decarbonisation policies and ECAs in the Arctic and Norwegian Sea, it also honed in on ballast water—a topic that has quietly regained importance. The committee approved critical updates to how ballast water operations and ballast water management system (BWMS) maintenance are recorded. The goal: Enhance transparency, reduce ambiguity, and reinforce environmental protection by making records more structured, traceable, and actionable. This renewed focus is both a warning and an opportunity. In recent years, too many Port State Control detentions and inspection delays have stemmed not from hardware failures, but from poorly maintained or unclear ballast water records. These new updates aim to change that—and they’re stricter, smarter, and more detailed than before. What’s changing: Bypass scenarios and maintenance logging The revised guidelines introduce two new scenarios for vessels dealing with challenging water quality (CWQ) in ports: Scenario 3: A reactive bypass of the BWMS due to unforeseen poor water quality. Scenario 4: A pre-emptive bypass based on anticipated CWQ conditions. These additions are essential for vessels operating globally, particularly those above 400GT. They ensure that alternative operations—like ballast water exchange plus treatment (BWE + BWT)—are clearly documented. Without accurate records, even legitimate actions can fall short of compliance. Ballast Water Management Plan and OEM manuals MEPC 82 also mandates that BWMS care procedures must now be recorded directly in BWRB MEPC 82 also mandates that BWMS maintenance procedures must now be recorded directly in the Ballast Water Record Book (BWRB), in line with the ship’s Ballast Water Management Plan and Original Equipment Manufacturer (OEM) manuals. Responsible crew members must sign off on these records, ensuring traceability and crew accountability. This step isn’t just regulatory housekeeping—it aligns ballast water maintenance with how other onboard systems are already tracked, from engines to emissions. It’s a logical, overdue move toward consistency across compliance. Paper or digital: The format dilemma While the BWRB can still be maintained on paper or electronically, the burden of new structured data fields and stricter reporting timelines will be felt most by those still tied to manual systems. Each additional layer of documentation increases the chance of human error—and with nearly 6 in 10 compliance failures already stemming from admin issues, that’s a risk many operators can’t afford. This is where digital solutions can offer real relief. At NAPA, we’ve already implemented the latest IMO guidelines into our electronic logbook, so crews can comply with MEPC.369(80) requirements out of the box. With ready-made entry templates and smart input validation, data entry is quick, accurate, and audit-ready. NAPA implemented the latest IMO guidelines into an electronic logbook. Better still, once updated, operators can apply for the BWM Convention Electronic Record Book Declaration from their flag—ensuring that compliance is recognised internationally under MEPC.372(80). Less admin, more assurance Electronic logbooks don’t just streamline compliance—they enable better decision-making. When connected to onboard systems, they automatically pull operational data into the BWRB, reducing manual work and error margins. This frees up the crew to focus on operations and safety, rather than paperwork. From a management perspective, real-time visibility into ballast operations and maintenance records helps shore teams stay ahead of inspections and identify potential compliance gaps early. One logbook, many regulations While ballast water is the focus today, it’s not the only regulation demanding attention While ballast water is the focus today, it’s not the only regulation demanding attention. At NAPA, we’ve designed our logbook to support a wide range of evolving compliance frameworks—including MARPOL, EU-ETS, EU-MRV, CII, and the Garbage Record Book. This unified approach removes silos, reduces duplicated effort, and gives operators a more holistic view of vessel performance and compliance. A smarter way forward With decarbonisation and environmental regulations shifting at breakneck pace, even the most experienced crews and fleet managers can struggle to stay up to date. That’s where technology has a crucial role to play—not to replace expertise, but to support it. At NAPA, we work closely with shipowners and operators to configure regulatory record book templates according to their fleet workflows and each vessel’s specific operational profile. This ensures accuracy, ease of use, and most importantly, continuous compliance—even as the rules keep changing. Because in today’s compliance landscape, staying ahead isn’t just about meeting the minimum. It’s about building systems that help you adapt, respond, and thrive. And that starts with getting the record-keeping and data management right.
President Donald Trump has already made plenty of headlines since taking up his second term in the White House, including with the announcement of numerous new tariffs on imports. The 47th United States President issued three executive orders on February 1st 2025, just days after his inauguration, which directed the US to impose an additional 25 percent ad valorem rate of duty on imports from Canada and Mexico, as well as ten percent on imports from China. How Trump’s 2nd term as US President Cleveland Containers has analysed the early reactions to these announcements Excluding Canadian energy resources exports – which instead will be hit with a ten percent tariff – the tariffs have been applied to all imports which are either entered for consumption or withdrawn from warehouse for consumption on or after 12:01 am Eastern Standard Time on February 4th 2025. President Trump also told reporters on February 8th 2025 that a 25 percent tariff on all American steel and aluminium imports was coming into effect across the US during February. Leading 40ft shipping container supplier Cleveland Containers has analysed the early reactions to these announcements and how President Trump’s second term as US President could affect the world’s shipping industry, especially when looking back at his first term. Reaction to President Trump’s tariff announcements Mexico, Canada and China were all quick to react to President Trump’s announcement of tariffs on imports. Mexican President Claudia Sheinbaum said her country would vow for resilience against the measures, while a senior government official in Canada said that their country would challenge the decision by taking legal action through the necessary international bodies. China has also said it would be challenging the tariffs at the World Trade Organisation. According to the country’s finance ministry, as reported on by Geopolitical Intelligence Services, Beijing were moving to place levies of 15 percent on American coal and liquefied natural gas, as well as levies of ten percent on crude oil, certain vehicles and farm equipment. Beginning of making America rich again When it comes to the announcement of the tariff on all American steel and aluminium imports, President Trump told reporters in the Oval Office: "This is a big deal, the beginning of making America rich again. Our nation requires steel and aluminium to be made in America, not in foreign lands.” Francois-Phillippe Champagne, the Minister of Innovation in Canada, stated that the tariffs were "totally unjustified" though, before adding in a post on X: "Canadian steel and aluminium support key industries in the US, from defence, shipbuilding and auto. We will continue to stand up for Canada, our workers, and our industries." How might President Trump’s 2nd term affect shipping sector? Bruce Chan, an analyst in the Transportation and Future Mobility sectors at wealth management and investment banking Just ahead of President Trump taking office for the second time, J. Bruce Chan, an analyst in the Transportation and Future Mobility sectors at wealth management and investment banking firm Stifel, believed that the shipping industry was prepared for the new tariffs. However, he also stated to the Morning Star: "President Trump's Administration promises to usher in a new trade and tariff regime. As such, it's difficult to assess the ultimate impact to the freight transportation industry. Prima facie, we believe tariffs are a drag on freight demand, effectively resulting in higher costs for shippers that are generally passed on to end consumers over time." Attention to the American sanction announcements Mr. Chan went on to note that those involved in shipping containers across continents should be paying particular attention to the American sanction announcements. He commented: "Because almost all trans-Pacific trade moves over the ocean, we believe ocean container shipping will see the largest direct impact. But for shippers and retailers, there is no cheaper way to move goods than over the ocean, so there are few modal alternatives if production remains in Asia. We see the most risk for maritime shipping, with containers and dry bulk being more acute, with more insulation for oil and gas tankers." Shipping news and intelligence service Various sources have looked back on President Trump’s first term to get an idea of what could be expected As President Trump has just become his second term as US president and the American sanctions have only just been announced, it will take time to see what the true impact will be. However, various sources have looked back on President Trump’s first term to get an idea of what could be expected. For example, shipping news and intelligence service Lloyd’s List pointed out that tariffs introduced when President Trump was last in the White House had a noticeable effect on both spot container freight rates and import timing. Cargoes were pulled forward in the second half of 2018 by importers as they looked to beat tariff deadlines, which resulted in higher spot rates temporarily before affecting rates in 2019 because of inventory overhang. Could repeat results be seen across 2025 and 2026? Long-life inputs and goods from the tariff countries Jason Miller, a freight economist and professor of supply chain management at Michigan State University, certainly seemed to think so. Speaking to Lloyd’s List before President Trump’s 2024 presidential victory when the tariffs were only part of campaign proposals at that point, he said: “We will see front-loading like we have never seen before in 2025. There would be a massive pull-forward of demand as everybody rushes to bring in long-life inputs and goods from tariff countries, especially China.” Shipping demand and routes Shipping demand and routes could be affected due to trade uncertainty too Meanwhile, international shipping and forwarding agents Supreme Freight Services reported that increased tariffs may cause disruption to shipping volumes and global supply chains, if trade policies introduced by President Trump during his first term are anything to go by. Shipping demand and routes could be affected due to trade uncertainty too, though the publication also acknowledged that increased investment in ports and inland waterways across the US could improve efficiency for domestic and international trade alike. New American sanctions Cleveland Containers has looked to reassure its customers that any disruption caused by the new American sanctions will be minimised at the firm. Hayley Hedley, the company’s Commercial Director, stated: “Recent history certainly suggests that the new tariffs being introduced by President Trump will have various knock-on effects across the shipping industry." “Fortunately, Cleveland Containers has a continuous supply of shipping containers entering the UK. We work with several agents to ship from various locations, as well as having good stock on the ground, so are confident in our ability to provide for our customers.”
The shipping industry is currently navigating a profound transformation driven by environmental concerns, new emissions targets, and evolving regulations. As vessel owners and operators seek to reduce emissions while remaining competitive, determining the right strategy has become increasingly complex. Factors such as alternative fuel availability, fluctuating prices, and an ever-expanding range of technological solutions have made decision-making anything but straightforward. Lack of motivation Regulations evolve, technologies persist to advance, and can differ greatly from port to port The complexity arises from the many moving parts of the industry. Regulations evolve, technologies continue to advance, and infrastructure can differ greatly from port to port. For vessel owners committed to reducing their environmental impact, the challenge isn’t a lack of motivation, it’s finding the most effective way to navigate the myriad of options available. Hybrid propulsion systems One method gaining traction is data-driven decision-making through digital modelling. Rather than making decisions based on guesswork, digital modelling allows owners and operators to create a detailed representation of a vessel and simulate the performance of different strategies or technologies over its lifetime. That way, they can ‘test’ these approaches before committing large investments—particularly useful when considering new fuels or hybrid propulsion systems that are still maturing. Decarbonisation Modelling Service Digital modelling accounts for variables such as vessel speed, power needs, and route patterns Digital modelling accounts for variables such as vessel speed, power needs, and route patterns, applying machine-learning algorithms to find the most promising design or retrofit. It can also show how ideas might evolve if regulations tighten, or new fuels become more practical. At Wärtsilä, our Decarbonisation Modelling Service is designed to guide shipowners and operators through this maze of choices. In developing this tool, we have observed that shipowners required more than an “off-the-shelf” solution. They needed insights based on their own operational data, combined with practical knowledge of costs and likely regulatory trends. Benefits of digital modelling One of the main benefits of digital modelling is its flexibility. Depending on an owner’s goals, whether that’s meeting today’s regulations or planning for future mandates, they can explore multiple options. A fleet operator might compare installing hybrid batteries versus retrofitting for LNG or consider alternative fuels such as ammonia and methanol, or carbon capture. These simulations can factor in fuel prices, available bunkering infrastructure, and even unexpected events like global supply chain disruptions or future carbon taxes. Ship’s actual operational profile At Wärtsilä we often liken digital modelling as the closest thing to a crystal ball At Wärtsilä we often liken digital modelling as the closest thing to a crystal ball. While it isn’t perfect, it significantly improves our ability to make informed decisions and maintain flexibility as market conditions or regulatory landscapes shift. Consider, for instance, a mid-sized container ship operating in Asia. The owner, eager to lower CO2 emissions, might be unsure whether to retrofit for LNG immediately or wait for ammonia infrastructure to mature. Using a digital model based on the ship’s actual operational profile, we can test both scenarios—evaluating fuel price trends, port facilities, and the vessel’s remaining service life. Adopt an interim strategy If the model indicates that an LNG retrofit offers a promising return on investment along with moderate emissions cuts, the decision becomes clearer. Alternatively, if the potential for ammonia becomes evident sooner, it might be wiser to adopt an interim strategy or consider dual-fuel engines. It’s important to recognise that decarbonisation is not merely a box-ticking exercise to meet current regulations; it is a dynamic, ongoing process. With tightening rules from bodies like the International Maritime Organization (IMO) and the EU on carbon intensity, and with cargo owners increasingly demanding transparency, the need for adaptive, data-driven solutions is more critical than ever. LNG with battery storage Others might make quick retrofits to comply with rules and plan for bigger upgrades later Another strength of data-driven decarbonisation is that it is not a one-off activity. As a vessel operates, new information becomes available. Owners can update their models to reflect these shifts, allowing for continuous refinement. This matters because what is optimal now may only be a temporary measure. Some operators use LNG with battery storage for a few years, then switch to next-generation fuels as they become viable. Others might make quick retrofits to comply with regulations and plan for bigger upgrades later. Raw data into actionable insights There is also a perception that gathering and interpreting data is too complex or costly. However, many modern vessels are already equipped with the necessary sensors and tracking systems, and analytics software has become more accessible. The real value lies in transforming raw data into actionable insights. Digital models not only help in planning for evolving market conditions but also enable us to visualise and execute long-term strategies. Portion of global CO2 emissions The real test is balancing environmental aims with retail realities and regulatory forces Shipping contributes a notable portion of global CO2 emissions, giving the industry strong financial and ethical reasons to embrace cleaner operations. The real test is balancing environmental aims with commercial realities and regulatory pressures. With mounting pressure from regulators, customers, and investors, now is an opportune time to adopt data-driven approaches. A continuously updated model provides a practical way to keep up with changes in the market and policy landscape. By integrating operational data, anticipating possible scenarios, and remaining open to new solutions, the maritime industry can cut emissions without sacrificing competitiveness. Shipowners and operators Shipping is an industry that operates on tight margins and these tools must deliver financial stability as well as ongoing compliance. Digital modelling is not just another technical tool; it’s a forward-looking process that helps shipowners and operators steer a confident course in uncertain waters. As more companies experiment with alternative fuels, hybrid propulsion, and emerging technologies, having a robust method for evaluating these options is absolutely essential.
Harbour insights
Ammonia is gaining traction as a future fuel in the maritime industry, primarily due to its potential to significantly reduce greenhouse gas emissions. A key driver for ammonia's interest is that it can be carbon-free when combusted, which aligns with the maritime industry's increasing pressure to meet emissions regulations. However, most ammonia production currently relies on fossil fuels. Transitioning to "green ammonia" production is crucial for sustainability. If "green ammonia" is produced using renewable energy sources, it offers a pathway to near-zero emissions shipping. Safety measures and regulations Ammonia’s volumetric energy density – higher than hydrogen – makes it more practical for onboard storage. However, ammonia is toxic, which requires stringent safety measures and regulations for handling and storage. The combustion of ammonia can produce nitrous oxide (N2O), a potent greenhouse gas. Therefore, mitigation technologies are needed. Building the necessary infrastructure for ammonia bunkering and supply will be a significant undertaking. Developing guidelines for safe use Ammonia is poised to play a significant role in the maritime industry's transition to a future The International Maritime Organization (IMO) is developing guidelines for the safe use of ammonia as a marine fuel. Increasing numbers of companies are investing in the development of ammonia-fueled vessels and technologies. European Union (EU) legislation, such as the EU Emissions Trading System (ETS) and the FuelEU initiative to support decarbonisation, are pushing the maritime industry towards the use of alternative fuels, which is increasing the potential of ammonia. While challenges remain, ammonia is poised to play a significant role in the maritime industry's transition to a more sustainable future. Ongoing research and development Ongoing research and development are focused on improving safety, reducing emissions, and scaling up production. In essence, ammonia offers a promising pathway for the maritime industry to reduce its carbon footprint, but its widespread adoption depends on overcoming technical and logistical challenges. Working toward the future of ammonia Progress is already happening as the maritime industry works toward a future that includes the use of ammonia as a fuel. For example, one project underway aims to be a pioneer in establishing a comprehensive and competitive supply chain to provide clean ammonia ship-to-ship bunkering in the U.S. West Coast. Progress is already occurring as the maritime industry works toward a future A feasibility study is being conducted at the Port of Oakland, Benicia, and nearby major ports on the U.S. West Coast. A Memorandum of Understanding (MOU) between American Bureau of Shipping, CALAMCO, Fleet Management Limited, Sumitomo Corp. and TOTE Services LLC is jointly conducting the feasibility study. "We are proud to share our industry-pioneering expertise in ammonia as a marine fuel to support this study on the U.S. West Coast,” said Panos Koutsourakis, Vice President of Global Sustainability at the American Bureau of Shipping. “Our expertise in developing safety guidelines will support the consortium to address the ammonia-specific set of safety and technology challenges.” More global ammonia developments In another development, three LPG/ammonia carrier ships have been ordered at the South Korean shipyard HD Hyundai Heavy Industries (HD HHI). Danish investment fund European Maritime Finance (EMF) and international shipping company Atlas Maritime have confirmed the order. HD HHI’s parent company, HD Korea Shipbuilding & Offshore Engineering (HD KSOE), revealed the order for $372 million in March 2024. The three 88,000 cubic-metre LPG dual-fuel carriers, capable of carrying and running on ammonia, are scheduled for delivery in December 2027. The vessels will be named EMF Viking I, II, and III. Also, Lloyd’s Register (LR) and Guangzhou Shipyard International have signed a joint development project to design the world’s largest very large ammonia carrier (VLAC). The design of the 100,000-cubic-metre vessel has been assessed in line with LR’s Structural Design Assessment and prescriptive analysis. The gas carrier will have an independent IMO Type B tank for safe carriage of the chemical. Zero-emissions operations The cargo ship, which will be 7,800 dwt, is designed to transport timber from Norway to Europe “As major economies look to co-fire ammonia in their coal power stations to reduce the CO2 footprint of their national energy mix, shipping will play a key role in distributing clean hydrogen-based commodities such as ammonia, thereby supporting nations to meet their Paris Agreement commitments," says LR's Chief Executive Nick Brown. Furthermore, a partnership of companies from Norway has ordered a pioneering short-sea cargo ship that will advance the industry’s ability to provide zero-emissions operations. The cargo ship, which will be 7,800 dwt, is designed to transport timber from Norway to Europe and will be the first to operate on ammonia and electricity. Amogy’s ammonia-to-electrical power system A start-up company focusing on ammonia-to-power technology, Amogy, demonstrated the first tugboat powered by its cracking technology just short of the fourth anniversary of the company’s launch. The trip of a 67-year-old tug along a tributary of New York State’s Hudson River is part of the company’s works to develop and commercialise its technology to decarbonise the most difficult industries. Amogy’s ammonia-to-electrical power system splits, or “cracks,” liquid ammonia into its base elements of hydrogen and nitrogen. The hydrogen is then funnelled into a fuel cell, generating the power for the vessel. Research points to the risks of ammonia The chemical, made of hydrogen and nitrogen, can also be burned as a zero-carbon fuel Today and in the future, ammonia, a main component of many fertilisers, can play a key role in a carbon-free fuel system as a convenient way to transport and store clean hydrogen. The chemical, made of hydrogen and nitrogen, can also be burned as a zero-carbon fuel. However, new research led by Princeton University scientists illustrates that even though it may not be a source of carbon pollution, ammonia's widespread use in the energy sector could pose a grave risk to the nitrogen cycle and climate without proper engineering precautions. Use of ammonia U.S. National Science Foundation (NSF)-supported research found that a mismanaged ammonia economy could ramp up emissions of nitrous oxide, a long-lived greenhouse gas around 300 times more potent than carbon dioxide and a major contributor to the thinning of the stratospheric ozone layer. The use of ammonia could lead to substantial emissions of nitrogen oxides, a class of pollutants that contribute to the formation of smog and acid rain. And it could directly leak fugitive ammonia emissions into the environment, forming air pollutants, impacting water quality and stressing ecosystems by disturbing the global nitrogen cycle. Negative impacts of an ammonia economy The researchers found that the potential negative impacts of an ammonia economy "We have great hope that ingenuity and engineering can help reduce our use of carbon-based energy sources," said Richard Yuretich, a program director in NSF's Division of Earth Sciences. "But caution is advised because of unintended environmental spillover effects that may result from new technology." The researchers found that the potential negative impacts of an ammonia economy may be minimised with proactive engineering practices, but the possibility of risks should not be taken lightly. Addressing an inconvenient reality As interest in hydrogen as a zero-carbon fuel has grown, so too has an inconvenient reality: It is notoriously difficult to store and transport over long distances, requiring storage at either temperatures below -253 degrees Celsius or at pressures as high as 700 times atmospheric pressure. Ammonia, on the other hand, is much easier to liquify, transport and store, and capable of being moved around similarly to tanks of propane. Nonetheless, the cycle of nitrogen is delicately balanced in Earth's critical zone, and extensive research must be undertaken to investigate the repercussions of ammonia combustion and to develop new methods to minimise the risks. Challenges of ammonia as a maritime fuel Here's a breakdown of the key challenges of using ammonia for maritime fuel: Toxicity and Safety: For human health, ammonia is highly toxic, posing a serious risk to human health through inhalation or skin contact. This necessitates stringent safety protocols, advanced leak detection systems, and thorough crew training. Relating to the environment, leaks can also harm aquatic ecosystems, requiring robust containment and mitigation measures. Combustion Challenges: Ammonia's combustion characteristics are less favourable than traditional fuels, requiring modifications to engine design and potentially the use of pilot fuels. Emissions: Combustion can produce nitrogen oxides (NOx) and nitrous oxide (N2O), both of which are harmful pollutants. Mitigating these emissions is crucial. "Ammonia slip" is also a concern, in which unburnt ammonia is released. Infrastructure and Supply Chain: Establishing a global network of ammonia bunkering infrastructure is a massive undertaking, requiring significant investment and coordination. Scaling up "green ammonia" production, using renewable energy, is essential for its sustainability. This requires a robust and reliable supply chain. Storage: Ammonia has specific storage requirements, and onboard storage systems must be designed for safety and efficiency. International Standards Needed: Consistent and comprehensive international regulations and standards are needed for the safe handling, transportation, and use of ammonia as a marine fuel. While the IMO is developing Guidelines, complete and ratified rules are still needed. Economic challenges: "Green ammonia" is currently more expensive than traditional fuels, although costs are expected to decrease as production scales up. Significant investments are needed in research, development, and infrastructure to make ammonia a viable maritime fuel. Also, dedicated ammonia-fueled engines are still under heavy development, and do not have widespread availability. The path to commercialisation Overcoming the variety of technical and other obstacles will require collaboration among governments, industry stakeholders, and research institutions. The timeline for ammonia deployment in maritime applications is actively unfolding, with key milestones happening now and soon. 2025 marks the first trials of two-stroke, ammonia dual-fuel engines on oceangoing ships. Engine manufacturers like MAN Energy Solutions and WinGD are progressing with their engine development, with initial deliveries soon. These pilot projects are crucial for gathering real-world data and building confidence in ammonia as a marine fuel. Development of comprehensive regulations As the maritime industry faces, ammonia is hoped to play a growing role in the fuel mix Gradual commercialisation will follow in the late-2020s as the technology matures and the infrastructure develops. The focus will be on refining engine technology, improving safety protocols, and establishing bunkering facilities in key ports. Wider adoption will likely follow in the 2030s, depending on factors such as the cost of green ammonia, the development of comprehensive regulations, and the expansion of the global supply chain. As the maritime industry faces increasing pressure to decarbonise, ammonia is expected to play a growing role in the fuel mix. Future of maritime It's likely that a combination of ammonia and other alternative fuels and technologies will be used in the future of maritime. Alternatives include methanol, liquid natural gas (LNG), hydrogen, biofuels, electric propulsion, and even nuclear power. Ammonia is a strong contender, bit it faces stiff competition from other promising technologies. The maritime industry's transition to a sustainable future will likely involve a diverse mix of fuel solutions.
The Dark Fleet refers to a network of vessels that operate outside of standard maritime regulations, often used to transport sanctioned goods such as oil. These shadowy vessels are also referred to by terms such as Parallel Fleet and/or Shadow, Gray or Ghost fleet. The terms are all manifestations of the same thing – ships that are owned, structured, and operated to avoid exposure to sanctions. Fleet of ships “In fact I would prefer that we use the term Parallel Fleet because it more accurately describes what it is,” says Mike Salthouse, Head of External Affairs, of NorthStandard, a Protection and Indemnity (P&I) insurer. “Specifically, it is a fleet of ships operating in parallel to mainstream shipping while avoiding use of service providers that are subject to sanctions legislation.” Modern shipping sanctions Sanctions were to be enforced not just against the sanctions-breaking vessel but also the services Modern shipping sanctions can be traced back to the introduction of the U.S. Comprehensive Iran Sanctions Accountability and Divestment Act 2010 or “CISADA”. Under CISADA for the first time, sanctions were to be enforced not just against the sanctions-breaking vessel but also the services (for example insurance, class, flag, banks) that the vessel used. EU/G7 Coalition adopting sanctions As a result, all maritime service providers sought to distance themselves and introduce contractual termination clauses in their service contracts forcing such vessels to either trade without such services or to access them from non-sanctioning jurisdictions. This led immediately to the creation of mainly Iranian ships that could continue to carry cargoes subject to western economic sanctions – such as Iranian oil. However, the fleet has grown exponentially following the EU/G7 Coalition adopting sanctions targeting Russian shipping. Today the majority (but not all) of the Dark Fleet is engaged carrying Russian cargoes – but other trades include Iran, North Korea, and Venezuela. Protection of the marine environment Dark Fleet undermines transparent governance policies that ensure the welfare and safety “It might be that a removal of Russian sanctions would remove the need for such a fleet,” adds Salthouse. “But for so long as nations use maritime sanctions as a foreign policy tool, my own view is that the Dark Fleet phenomenon will continue to facilitate sanctioned trades.” The Dark Fleet undermines transparent governance policies that ensure the welfare and safety of those on board and the protection of the marine environment. In recent years, the safety of tankers has improved significantly. These improvements have been driven by factors such as greater operational oversight from the oil majors, younger double hull vessels, greater operational scrutiny, and more rigorous legislation. Safety has been prioritised over all else. Transport oil using ships and services “The commercial dynamics that apply to the Dark Fleet are very different,” says Salthouse. “The overwhelming commercial imperative is not safety but to transport oil using ships and services to which sanctions legislation does not apply. As such, the customer and regulatory oversight is much reduced.” The vessels used by the Dark Fleet also tend to be older. Even if it were possible to find shipyards that were prepared to build for use carrying sanctioned cargoes (and so risk secondary sanctions depriving them of access to western financial markets and insurers), the long build times mean that such ships would not become available for several years. As such, the vessels that comprise the Dark Fleet tend to be end-of-life and aged 15 years or older. Commercial reinsurance markets The insurers of the ship will likely have been unable to access commercial reinsurance markets used If and when an accident happens, the ability of the insurer to respond by using commercial salvors and pollution responders will be curtailed by sanctions legislation, and the insurers of the ship will likely have been unable to access commercial reinsurance markets commonly used to access the high levels of cover required to fully compensate victims. Sanctioning individual ships is an effective way of addressing the Dark Fleet because shipping that trades internationally invariably needs access to western financial and service markets, which a designation deprives them of. Collaboration with mainstream shipping EU/G7 Coalition States to date have designated over 100 vessels, but in practical terms, the Dark Fleet is much larger than this – somewhere in the region 600 to 1000 vessels – so more needs to be done, says Salthouse. Thought also needs to be given as to how to dispose of old designated tonnage (as designation will prevent scrapping) whilst at the same time addressing the supply side so that designated ships cannot simply be replaced. “That can only be achieved in collaboration with mainstream shipping which should be consulted and partner with governments to achieve their aim,” says Salthouse. Majority of shipowners and service Dark Fleet will thrive for so long as maritime sanctions are deployed by states as a means of foreign policy goals Without concerted state action delving with the existing fleet and its access to new ships, the Dark Fleet will thrive for so long as maritime sanctions are deployed by states as a means of achieving their foreign policy goals. The cost of compliance to mainstream shipping is huge. The vast majority of shipowners and service providers deploy significant resources to avoid inadvertently contravening applicable sanctions. EU/G7 Coalition partners should recognise that and work with the shipping industry to marginalise the commercial space served by the Parallel/Dark Fleet rather than simply imposing ever greater and more complex compliance requirements, comments Salthouse. Use of EU/G7 Coalition service In a majority of cases, the Parallel Fleet is not breaking any laws. With the exception of the UN sanctions programme directed at North Korea, the Parallel/Dark Fleet can trade perfectly lawfully. For example, it is not illegal for a Russian flagged ship, insured in Russia, classed in Russia and trading with non-EU/G7 Coalition partners to transport Russian oil sold above the price cap through international waters to non-EU/G7 Coalition states provided the trade does not make use of EU/G7 Coalition service providers. Use of established service providers The Parallel/Dark Fleet is bad for shipping and undermines EU/G7, and on occasions, UN sanctions programmes, says Salthouse. States cannot control a trade when the ships carrying the cargoes and the service providers involved are not subject to the jurisdiction of that State. Similarly, when ships sink and cause pollution, the whole shipping industry suffers by association, and the additional complexities involved in responding to a casualty that cannot make use of established service providers could make a bad situation much worse.
Carbon capture and storage (CCS) can contribute to decarbonisation of the maritime industry, especially when combined with other approaches. CCS allows ships to continue using fossil fuels while capturing and storing the emitted CO2. It’s a helpful interim approach if a vessel’s immediate transition to alternative fuels is not feasible due to infrastructure limits or technology constraints. CCS can extend a vessel’s operational lifespan, both reducing emissions from existing vessels while avoiding premature scrapping and associated environmental impacts. Technology challenges There are technology challenges, such as higher fuel consumption and process costs for ships As the industry works toward the use of zero-emission fuels such as green hydrogen, ammonia and methanol, CCS offers a more gradual and realistic pathway to decarbonisation. CCS is also an attractive option for long-haul shipping routes where alternative fuel infrastructure may be limited. However, there are technology challenges, such as higher fuel consumption and operation costs for ships. Space constraints are another obstacle considering the needs to operate and install CCS equipment on board ships. Clear and supportive regulation More work is needed to provide secure and reliable long-term storage of captured CO2, which is still under development. Technology advancement and government incentives are also needed to increase the economic viability of Carbon Capture and Storage for ships operators. Clear and supportive regulation paves the way for widespread adoption of CCS in the maritime sector, including standards for capture, transport, and storage. Carbon capture and storage The amine solution, now loaded with CO2, is then sent to a regenerator (stripper) In a CCS system, carbon dioxide (CO2) is captured from a ship’s exhaust gases after the fuel has been burned. This often involves chemical absorption, in which the exhaust gases pass through a solvent that absorbs the CO2. A contactor (absorber) uses an amine solution to react chemically with the CO2, forming a carbamate compound. This effectively removes the CO2 from the flue gas. The amine solution, now loaded with CO2, is then sent to a regenerator (stripper). Heat is applied to the solution, causing the carbamate to decompose, releasing the captured CO2. Onshore storage sites The CO2 is then separated and stored onboard in high-pressure tanks as a liquid, and later offloaded at designated ports for transport to onshore storage sites. There is an energy penalty in the process, since CCS itself requires energy, which can increase fuel consumption and operating costs for the ship. Because onboard storage capacity for captured CO2 can be limited, frequent offloading is required. Adoption timeline for CCS Most CCS projects in the maritime sector are still in the research and development phase In the near term (5 to 10 years), initial deployments of CCS on select vessels will likely focus on niche applications or specific routes. Most CCS projects in the maritime sector are still in the research and development phase. Some pilot projects and demonstrations are underway to test the feasibility and effectiveness of CCS technologies, but large-scale commercial deployments of CCS systems on board ships are still to come. If technological advancements and economic viability improve, CCS could see more widespread adoption in the maritime sector within the next 10 to 20 years, particularly for vessels where alternative fuel options are limited or not yet feasible. The development of a robust infrastructure for the transport and storage of captured CO2 will be crucial for the large-scale deployment of CCS in the maritime. Requirements of CCS systems for maritime use Looking long-term (20 years or more), CCS could become a mature technology integrated into the broader maritime decarbonisation landscape, potentially playing a role alongside other technologies like alternative fuels and energy efficiency measures. Continued research and development will aim to improve the efficiency, cost-effectiveness, and space requirements of CCS systems for maritime use. The development of more efficient and compact CCS systems is crucial for their widespread adoption in the maritime sector. Reducing the costs, including capital expenditures and operational expenses, is also essential. Clear and supportive regulations, including carbon pricing mechanisms and incentives for CCS deployment, will encourage its adoption. Complementary technologies toward decarbonisation Another option is using fuel cells to convert hydrogen or other fuels into electricity for propulsion CCS can be used in conjunction with transitional fuels like Liquefied Natural Gas (LNG), capturing and storing CO2 emissions from LNG-powered vessels to reduce the carbon footprint while the industry transitions to zero-emission fuels. CCS can be particularly valuable for sectors where zero-emission alternatives may not be readily available or feasible, such as long-haul shipping. CCS can also serve as a backstop technology, providing a potential solution for residual emissions from alternative fuel pathways, even if they are considered low-carbon. A range of alternative fuel scenarios drive research and development into new technologies such as biofuels, green hydrogen, ammonia, and methanol. Another possibility is using fuel cells to convert hydrogen or other fuels into electricity for propulsion. Better battery technology, including better capacity and charging infrastructure, is needed. And ship designs must be optimised for alternative fuels, including storage and handling systems. Next stages for CCS The next stage in the development of carbon capture and storage (CCS) for maritime vessels will likely involve full-scale demonstration projects, moving beyond small-scale prototypes and lab tests to real-world applications on commercial vessels. More compact and lightweight systems will be developed to reduce the weight and space requirements on board ships. Viable business models and financial mechanisms are needed to make CCS economically attractive for ship owners. A clear and consistent regulatory framework can incentivise CCS adoption and ensure compliance with environmental standards. There also needs to be more public awareness and understanding of the role of CCS in decarbonising the maritime sector.
Case studies
At Scheveningen Harbour in the coastal city of The Hague in the Netherlands, an AI-based video security system from Bosch Building Technologies is now ensuring that every single ship or boat entering or leaving the harbour is logged. The customised solution developed by Bosch together with its partner BrainCreators automatically registers and classifies shipping traffic. Intelligent security solution Until now, employees at the port control centre had to keep an eye on shipping traffic around the clock from the window of the control centre and manually record the 80 or so vessels that pass through the port every day. The city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen The reason for the investment in the intelligent security solution was the fear that criminals would seek alternative routes via smaller ports such as Scheveningen, now that large Dutch or Belgian ports such as Rotterdam and Antwerp have been more secure against smuggled goods for some time. This was reason enough for the city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen. Challenging task in Scheveningen Special conditions require individual solutions Most boats and ships entering the port of Scheveningen are not required to register and, unlike purely commercial ports such as Rotterdam, the port cannot simply be closed off. In addition to cargo ships, there are also fishing boats and private sailing yachts at anchor, with small dinghies and rowing boats cruising between them. Keeping track of the movement of goods in particular is therefore a challenging task in Scheveningen, where the video security system with intelligent video analysis installed by Bosch provides welcome support. Author's quote The requirements for this project were very specific because the shipping traffic not only had to be filmed" "The requirements for this project were very specific because the shipping traffic not only had to be filmed, but also registered and classified. The solution also had to provide information about the speed of travel," says Niels van Doorn, Senior Manager Solutions & Portfolio at Bosch Building Technologies in the Netherlands. "Standard software can't do that. Together with our partner, we have therefore developed an AI that can identify and classify ships of all kinds–from passenger ships and freighters to sailing yachts and inflatable boats." This data aids in identifying suspicious shipping movements. Flexidome IP starlight 8000i cameras No sooner said than done – and in the shortest possible time Development, planning and implementation only took around 12 months. Two intelligent video cameras at the mouth of the harbour now record the traffic. The specially developed AI classifies the ship types and registers them in a file. Due to the difficult lighting conditions in the port, the Flexidome IP starlight 8000i cameras from Bosch were chosen. They deliver detailed images even in challenging weather and lighting conditions and enable the staff in the control centre to see every detail, even in very bright or dark image sections. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen All boat identifiers are recorded, documented, stored and automatically provided with additional information on date and time, direction of travel and speed around the clock using AI. The streams from the cameras are fed directly into a video management system. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen. By analysing all the data, peak times, ship types, trends and deviations from the norm are determined. New video documentation "The dashboard gives staff an overview of all activities in the port. The software protects the privacy of the people recorded by making their faces unrecognisable. The new video documentation now provides solid evidence and helps to identify suspicious and unusual situations more quickly and effectively," says Ferry Ditewig, Business Development Manager at Bosch Building Technologies in the Netherlands. The video solution is also well equipped for future challenges and can be flexibly expanded as required: for example, additional information from external sources could be integrated, such as meteorological data, tides or the automatic identification system (AIS) for exchanging ship data.
Internacional Marítima is a Brazilian company leader in marine and port support services, with over 35 years in the market and for over five years using WEG paints in its fleet. The vessel - BLG 2, originally destined to launch jack-ups of up to 8000 tonnes and reclassified to support work in ocean navigation, will be receiving a new paint job for restoration and protection in a 9,000 m² area of side, bottom and deck. WEG supplies paint for the vessel - BLG 2 WEG is supplying more than 11,000 litres of paint for painting the ship WEG is supplying more than 11,000 litres of paint for painting the ship. These are high performance paints, which offer resistance and durability. Among the products supplied to Internacional Marítima, WEG have Shop primer from WEGZINC 401 line, the epoxy finishing primer WEGPOXI WET SURFACE 89 PW, paints from WEG TIE COAT line, and the anti-fouling paint W-ECOLOFLEX SPC 200. All of WEG's products are ideal solutions for marine applications. WEG and Internacional Marítima partnership “WEG already has a long partnership with Internacional Marítima and the group’s shipyards were one of the determining factors for choosing WEG paints for this major project,” said Richard Ferraz - Unit Manager INC (Catarinense Naval Industry) of Navegantes, Santa Catarina - Brazil.
Peel Ports is working with a consortium led by the University of Liverpool to bid for the UK’s flagship national Clean Maritime Research Hub. As part of a wider partnership with the University of Liverpool’s School of Management, Peel Ports has committed to participating in workshops, sharing operational port data and insights and allocating staff time to the project. UK SHORE programme The designation is part of the government’s UK SHORE programme, which aims to decarbonise the maritime sector by exploring key challenges and barriers, and encouraging research and development opportunities. The programme is set to provide funding grant schemes for early research projects by UK universities. If successful, the University-led project will receive a total of £7.4m of funds over the course of the next four years. The research hub would make Liverpool the UK centre of excellence for clean maritime research and facilitate further academic and industrial cooperation. Author's quote University-led project will receive a total of £7.4m of funds over the course of the next four years Lewis McIntyre, Managing Director Port Services at Peel Ports said: “Peel Ports has received numerous industry accolades for its efforts in reducing its environmental impact, including this year’s prestigious Clean Maritime Operator award by Maritime UK. This reflects our efforts in decarbonising our port operations as a top priority, and we are delighted to support the University of Liverpool in its efforts to bid for projects of this nature, which align to our own net zero 2040 strategy.” Professor Dongping Song from the University of Liverpool’s Management School said: ”Peel Ports’ support and participation is extremely valuable for the application to establish the hub and for the future research in decarbonising maritime industry and beyond.” Newly created hub The newly created hub will address a number of issues including low and zero-emission fuels for the maritime sector, energy sources, vessel technology and landside infrastructure. The winning bid will be announced before the end of the summer by the awarding and funding bodies: the Engineering and Physical Sciences Research Council and the Department of Transport.
Höegh Autoliners has revolutionised maritime transport with its Aurora Class vessels, marking significant progress toward sustainable deep-sea shipping. These Pure Car and Truck Carriers (PCTCs) are designed to be the largest and most environmentally friendly in their class. Notably, the final four ships in this 12-vessel series are set to operate on sustainable ammonia, a zero-carbon fuel, upon their delivery in 2027. Aurora Class vessels Aurora Class vessels are initially running on LNG with the flexibility to transition to ammonia and methanol The Aurora Class vessels are initially running on liquefied natural gas (LNG) with the flexibility to transition to ammonia and methanol as these fuels become more accessible. This adaptability is emphasised by the ships’ receipt of DNV’s ammonia- and methanol-ready notations, a first in the PCTC segment. The final four vessels will feature MAN Energy Solutions’ two-stroke engines capable of being fuelled by ammonia, positioning them as pioneers in zero-GHG emission maritime transport. TGE Marine’s expertise A key enabler of this technological leap is TGE Marine, whose advanced tank designs and fuel gas handling solutions are at the core of the vessels’ ammonia propulsion capabilities. TGE Marine’s expertise in designing and engineering maritime gas systems has made them a global pioneer in gas containment and fuel supply technologies. Their tanks are specifically developed to safely store ammonia in maritime conditions, while their fuel gas systems are among the most advanced in the industry ensuring reliable fuel management, safe operations, and seamless engine integration. These solutions exceed the stringent safety and performance standards required for ammonia as a marine fuel. New ammonia fuel supply system TGE Marine has already supplied tanks and fuel gas systems to the first eight Aurora class vessels TGE Marine has already supplied tanks and fuel gas systems to the first eight Aurora class vessels, and within the final four vessels, the fuel supply system is intended to handle ammonia fuel which allow for the vessels to be an engineering front runner in the industry. The new ammonia fuel supply system comes among others with a reliquefaction system, a gas combustion unit (GCU) and an ammonia release and mitigation systems (ARMS). Aspects of TGE Marine’s contribution The following expands on the specific aspects of TGE Marine’s contribution to the vessels: Fuel Supply System: The fuel supply system is streamlined to support the main engine operation in an optimum manner allowing a reliable and stable operation with ammonia as fuel. The design of the system is addressing the demand to increase ammonia integrity and to allow safe operation incl. maintenance. Key design features are the utilisation of sealless pumps, high integrity equipment and automation resp. remote operation. Boil-off Gas (BOG) Treatment: The heat ingress into the ammonia storage tank will lead to evapouration of ammonia. To keep the tank pressure within allowable limit the vapour, the BOG, is routed from the type-c tank’s vapour space to the BOG Treatment System. The BOG Treatment system consists of two fully independent methods to manage the tank pressure, i.e., the Reliquefaction System and the Gas Combustion Unit (GCU). Reliquefaction System: Onboard reliquefaction systems are engineered to recondense the ammonia vapour that results from heat ingress into the storage tanks and system operation. Gas Combustion Unit: As with all systems, TGE Marine also ensure that in an unlikely event that the reliquefaction system would fail, a secondary ‘back up’ system would kick in. The method chosen for this set up a gas combustion unit (GCU). This method burns the boil off gas, and this allows the tank temperature and tank pressure to remain within the limits. The gas combustion unit can support also the treatment of nitrogen ammonia mixtures and non-standard operations, such as gas-freeing of systems for maintenance preventing the release of ammonia to the atmosphere. Safety Systems: Key for operating a vessel with ammonia as fuel is the safe operation taking the toxicity of ammonia into consideration. TGE Marine has implemented safety systems and measures into the design of the system. Risk assessments accompany the design and execution of the project at every stage. Ammonia recovery: A key element of the safe operation is the handling of potential operational and emergency releases originating from the fuel supply system and engine purge operations. For this purpose, an ammonia recovery system is applied to reduce the ammonia quantities being routed to the ammonia release mitigation system. Ammonia Release Mitigation System: The ammonia release mitigation system developed by TGE Marine, is reducing the ammonia quantity released to the atmosphere and ensures that ammonia concentrations are below health and safety limits. Primary benefits of configuration To underline the benefits of the system, these following can be listed as primary benefits of using such configuration: Fuel Efficiency: By applying an efficient ammonia fuel supply system and ammonia engine Environmental Compliance: Minimising emissions of ammonia gas into the atmosphere reduces the vessel’s environmental footprint and helps comply with stringent emissions regulations Safety and Stability: The system ensures stable operation, reducing the risk to personnel and enhancing onboard safety Operational Flexibility: This technology supports extended voyages without fuel losses and allows better management of varying fuel demands during different operational profiles New standard for sustainability in maritime transport Beyond propulsion, the Aurora Class vessels incorporate several eco-friendly features, some include 1,500 square metres of solar panels and the capability to connect to electric shore power, enabling emissions-free port operations. With these advancements, Höegh Autoliners, together with key partners like TGE Marine, is not only reducing its carbon footprint but also setting a new standard for sustainability in maritime transport, steering the industry toward a greener future.
Team Electric rose to some special challenges in its successful completion of electrical installation and refit work during Royal Caribbean’s recent high profile drydocking and ‘amplification’ of Allure of the Seas. Despite heavy weather, tight deadlines, and complex coordination across multiple contractors and workstreams, Team Electric showcased its hallmark adaptability and technical expertise to deliver the full scope of work on schedule. Three turnkey suppliers With a total workforce of 60 skilled electricians on site, Team Electric was engaged separately by three turnkey suppliers — Almaco, Makinen, and LMG — to execute electrical works across hotel areas, galleys, and public spaces on board the cruise ship. The project marked a return to familiar territory for Team Electric, which was also involved in the original construction of Allure of the Seas in Turku Shipyard in 2009. Project highlights Team Electric delivered full electrical works for the new Mason Jar restaurant and bar Achievements included the installation of 121 kilometres of electrical cabling and 4,500 metres of cable trays, across a project involving key technical areas as well as substantial hotel work. Among tasks that extended to 600 individual material line items, Team Electric fitted nearly 2,000 lights. The company’s hotel-side scope covered 61 new cabins on decks 11, 12, and 14 that were built within a prefabricated aluminium block and craned onto the ship. These new spaces included corridors, AC rooms, and associated technical infrastructure. In addition, Team Electric delivered full electrical works for the new Mason Jar restaurant and bar, as well as several refurbished galley spaces and three public areas including a Crown Lounge and a teens’ gaming zone. On the technical side, Team Electric upgraded a substantial portion of the ship’s navigation and communication systems, including the full cabling of the bridge with 9 kilometres of new wiring. A turnkey delivery of Fugro’s OceanStar system included not just cabling but also installation, commissioning, and user training, led by certified Team Electric engineers. Rising to the challenge “The weather was brutal. 30 days of torrential rain in a 40-day dry dock,” said Daniel Brown, Project Manager at Team Electric. “It had a knock-on effect on every trade, but we managed to push through and keep the program on track.” Meticulous planning and on-the-ground flexibility, Team Electric met all critical deadlines High winds frequently delayed crane operations and other key activities. Yet, through meticulous planning and on-the-ground flexibility, Team Electric met all critical deadlines. The project’s compressed dry dock period presented a further challenge. As Caj Persson, Technical Project Lead, explained: “They cut the dry dock time compared to the sister vessel Oasis of the Seas by over 10 days. That meant everything had to be done faster, with no compromise on quality.” Reliability pays Team Electric’s proven reputation in cruise ship refits was a key factor in securing the contract. “We’re well known in the industry for delivering complex and multi-faceted electrical refits, especially cabins and public areas,” said Daniel Brown. “We’re not always the cheapest, but clients know we get the job done on time and to the highest standards.” Fourth contractor with no onboard electrical team asked Team Electric to step in and support their work That reliability also paid off during the refit, when a fourth contractor with no onboard electrical team asked Team Electric to step in and support their work, sparking another relationship that is set to continue beyond this project. The working relationship with Royal Caribbean also proved crucial. “We know the fleet, we’ve been with them since these keels were laid,” said Persson. “That familiarity, and our long-standing relationship with partners like Foreship, made the coordination smoother, even under pressure.” Integrated installation Unlike newbuilds, refits present constantly shifting priorities and constraints. As Daniel Brown explained: “In public areas especially, we can’t even install light fittings until the ceiling is in. It takes extreme coordination. Every task affects the next.” From cabin design to bridge cabling, and from substations to galleys, the Allure of the Seas project exemplifies Team Electric’s full-spectrum capabilities. By blending technical know-how with practical execution, the company once again proved why it's the preferred electrical partner for cruise ship refits worldwide.
Bennett Marine, a Division of Yamaha Marine Systems Company, needed a solution that integrated solar energy generation and mechanical upgrades to optimise both sustainability and working environment outcomes. However, adding the cooling capacity needed by a large warehouse, and the employees working there, during the long Floridian summers could significantly increase the utility load on the building. Solution Bennett Marine’s management approached its outsourced service provider, ABM. Having successfully completed two lighting upgrades on site, and acting as the current janitorial service provider, ABM took Bennet Marine’s request to its Infrastructure Solutions team. ABM’s Infrastructure Solutions designed an energy-efficient HVAC system supported by a rooftop solar PV array that offset utility costs with renewable energy, leading to a net 58% reduction in total utility usage for the building. ABM also assisted in securing tax credits and energy incentives for the project, as well as a new roof for the facility with additional building envelope improvements. Finding a better solution for the client ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements" “Service experts across our company worked together to solve a need and deliver the sustainability solution Bennett Marine needed,” said Mark Hawkinson, President of ABM Technical Solutions. He adds, “ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements, improve indoor air quality, address waste and inefficiency, and create a positive impact for communities.” In addition to the new roof, net energy offset, and improved cooling, ABM was able to assist the project in receiving an estimated $226,000 in tax credits and $224,000 in Energy Incentives through the Federal MACRS (Modified Accelerated Cost Recovery System). Benefits ABM’s Infrastructure Solutions enable businesses to invest in critical infrastructure needs and achieve sustainability, security, and resilience goals. A custom energy program drives costs out of operating budgets and redirects savings to critical needs, helping fund improvements. Highlights of the project for the Deerfield, Florida, warehouse include: Projected energy cost savings in the first year of $12,701 Replacement of ageing roof and speed roll doors to reduce energy loss Solar panel installation is capable of offsetting 66% of the building’s utility use
At Scheveningen Harbour in the coastal city of The Hague in the Netherlands, an AI-based video security system from Bosch Building Technologies is now ensuring that every single ship or boat entering or leaving the harbour is logged. The customised solution developed by Bosch together with its partner BrainCreators automatically registers and classifies shipping traffic. Intelligent security solution Until now, employees at the port control centre had to keep an eye on shipping traffic around the clock from the window of the control centre and manually record the 80 or so vessels that pass through the port every day. The city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen The reason for the investment in the intelligent security solution was the fear that criminals would seek alternative routes via smaller ports such as Scheveningen, now that large Dutch or Belgian ports such as Rotterdam and Antwerp have been more secure against smuggled goods for some time. This was reason enough for the city council of The Hague to quickly find a tailor-made solution for the port of Scheveningen. Challenging task in Scheveningen Special conditions require individual solutions Most boats and ships entering the port of Scheveningen are not required to register and, unlike purely commercial ports such as Rotterdam, the port cannot simply be closed off. In addition to cargo ships, there are also fishing boats and private sailing yachts at anchor, with small dinghies and rowing boats cruising between them. Keeping track of the movement of goods in particular is therefore a challenging task in Scheveningen, where the video security system with intelligent video analysis installed by Bosch provides welcome support. Author's quote The requirements for this project were very specific because the shipping traffic not only had to be filmed" "The requirements for this project were very specific because the shipping traffic not only had to be filmed, but also registered and classified. The solution also had to provide information about the speed of travel," says Niels van Doorn, Senior Manager Solutions & Portfolio at Bosch Building Technologies in the Netherlands. "Standard software can't do that. Together with our partner, we have therefore developed an AI that can identify and classify ships of all kinds–from passenger ships and freighters to sailing yachts and inflatable boats." This data aids in identifying suspicious shipping movements. Flexidome IP starlight 8000i cameras No sooner said than done – and in the shortest possible time Development, planning and implementation only took around 12 months. Two intelligent video cameras at the mouth of the harbour now record the traffic. The specially developed AI classifies the ship types and registers them in a file. Due to the difficult lighting conditions in the port, the Flexidome IP starlight 8000i cameras from Bosch were chosen. They deliver detailed images even in challenging weather and lighting conditions and enable the staff in the control centre to see every detail, even in very bright or dark image sections. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen All boat identifiers are recorded, documented, stored and automatically provided with additional information on date and time, direction of travel and speed around the clock using AI. The streams from the cameras are fed directly into a video management system. Ships that are not seen in real-time by the personnel on duty appear as still images on the screen. By analysing all the data, peak times, ship types, trends and deviations from the norm are determined. New video documentation "The dashboard gives staff an overview of all activities in the port. The software protects the privacy of the people recorded by making their faces unrecognisable. The new video documentation now provides solid evidence and helps to identify suspicious and unusual situations more quickly and effectively," says Ferry Ditewig, Business Development Manager at Bosch Building Technologies in the Netherlands. The video solution is also well equipped for future challenges and can be flexibly expanded as required: for example, additional information from external sources could be integrated, such as meteorological data, tides or the automatic identification system (AIS) for exchanging ship data.
Internacional Marítima is a Brazilian company leader in marine and port support services, with over 35 years in the market and for over five years using WEG paints in its fleet. The vessel - BLG 2, originally destined to launch jack-ups of up to 8000 tonnes and reclassified to support work in ocean navigation, will be receiving a new paint job for restoration and protection in a 9,000 m² area of side, bottom and deck. WEG supplies paint for the vessel - BLG 2 WEG is supplying more than 11,000 litres of paint for painting the ship WEG is supplying more than 11,000 litres of paint for painting the ship. These are high performance paints, which offer resistance and durability. Among the products supplied to Internacional Marítima, WEG have Shop primer from WEGZINC 401 line, the epoxy finishing primer WEGPOXI WET SURFACE 89 PW, paints from WEG TIE COAT line, and the anti-fouling paint W-ECOLOFLEX SPC 200. All of WEG's products are ideal solutions for marine applications. WEG and Internacional Marítima partnership “WEG already has a long partnership with Internacional Marítima and the group’s shipyards were one of the determining factors for choosing WEG paints for this major project,” said Richard Ferraz - Unit Manager INC (Catarinense Naval Industry) of Navegantes, Santa Catarina - Brazil.
Peel Ports is working with a consortium led by the University of Liverpool to bid for the UK’s flagship national Clean Maritime Research Hub. As part of a wider partnership with the University of Liverpool’s School of Management, Peel Ports has committed to participating in workshops, sharing operational port data and insights and allocating staff time to the project. UK SHORE programme The designation is part of the government’s UK SHORE programme, which aims to decarbonise the maritime sector by exploring key challenges and barriers, and encouraging research and development opportunities. The programme is set to provide funding grant schemes for early research projects by UK universities. If successful, the University-led project will receive a total of £7.4m of funds over the course of the next four years. The research hub would make Liverpool the UK centre of excellence for clean maritime research and facilitate further academic and industrial cooperation. Author's quote University-led project will receive a total of £7.4m of funds over the course of the next four years Lewis McIntyre, Managing Director Port Services at Peel Ports said: “Peel Ports has received numerous industry accolades for its efforts in reducing its environmental impact, including this year’s prestigious Clean Maritime Operator award by Maritime UK. This reflects our efforts in decarbonising our port operations as a top priority, and we are delighted to support the University of Liverpool in its efforts to bid for projects of this nature, which align to our own net zero 2040 strategy.” Professor Dongping Song from the University of Liverpool’s Management School said: ”Peel Ports’ support and participation is extremely valuable for the application to establish the hub and for the future research in decarbonising maritime industry and beyond.” Newly created hub The newly created hub will address a number of issues including low and zero-emission fuels for the maritime sector, energy sources, vessel technology and landside infrastructure. The winning bid will be announced before the end of the summer by the awarding and funding bodies: the Engineering and Physical Sciences Research Council and the Department of Transport.
Höegh Autoliners has revolutionised maritime transport with its Aurora Class vessels, marking significant progress toward sustainable deep-sea shipping. These Pure Car and Truck Carriers (PCTCs) are designed to be the largest and most environmentally friendly in their class. Notably, the final four ships in this 12-vessel series are set to operate on sustainable ammonia, a zero-carbon fuel, upon their delivery in 2027. Aurora Class vessels Aurora Class vessels are initially running on LNG with the flexibility to transition to ammonia and methanol The Aurora Class vessels are initially running on liquefied natural gas (LNG) with the flexibility to transition to ammonia and methanol as these fuels become more accessible. This adaptability is emphasised by the ships’ receipt of DNV’s ammonia- and methanol-ready notations, a first in the PCTC segment. The final four vessels will feature MAN Energy Solutions’ two-stroke engines capable of being fuelled by ammonia, positioning them as pioneers in zero-GHG emission maritime transport. TGE Marine’s expertise A key enabler of this technological leap is TGE Marine, whose advanced tank designs and fuel gas handling solutions are at the core of the vessels’ ammonia propulsion capabilities. TGE Marine’s expertise in designing and engineering maritime gas systems has made them a global pioneer in gas containment and fuel supply technologies. Their tanks are specifically developed to safely store ammonia in maritime conditions, while their fuel gas systems are among the most advanced in the industry ensuring reliable fuel management, safe operations, and seamless engine integration. These solutions exceed the stringent safety and performance standards required for ammonia as a marine fuel. New ammonia fuel supply system TGE Marine has already supplied tanks and fuel gas systems to the first eight Aurora class vessels TGE Marine has already supplied tanks and fuel gas systems to the first eight Aurora class vessels, and within the final four vessels, the fuel supply system is intended to handle ammonia fuel which allow for the vessels to be an engineering front runner in the industry. The new ammonia fuel supply system comes among others with a reliquefaction system, a gas combustion unit (GCU) and an ammonia release and mitigation systems (ARMS). Aspects of TGE Marine’s contribution The following expands on the specific aspects of TGE Marine’s contribution to the vessels: Fuel Supply System: The fuel supply system is streamlined to support the main engine operation in an optimum manner allowing a reliable and stable operation with ammonia as fuel. The design of the system is addressing the demand to increase ammonia integrity and to allow safe operation incl. maintenance. Key design features are the utilisation of sealless pumps, high integrity equipment and automation resp. remote operation. Boil-off Gas (BOG) Treatment: The heat ingress into the ammonia storage tank will lead to evapouration of ammonia. To keep the tank pressure within allowable limit the vapour, the BOG, is routed from the type-c tank’s vapour space to the BOG Treatment System. The BOG Treatment system consists of two fully independent methods to manage the tank pressure, i.e., the Reliquefaction System and the Gas Combustion Unit (GCU). Reliquefaction System: Onboard reliquefaction systems are engineered to recondense the ammonia vapour that results from heat ingress into the storage tanks and system operation. Gas Combustion Unit: As with all systems, TGE Marine also ensure that in an unlikely event that the reliquefaction system would fail, a secondary ‘back up’ system would kick in. The method chosen for this set up a gas combustion unit (GCU). This method burns the boil off gas, and this allows the tank temperature and tank pressure to remain within the limits. The gas combustion unit can support also the treatment of nitrogen ammonia mixtures and non-standard operations, such as gas-freeing of systems for maintenance preventing the release of ammonia to the atmosphere. Safety Systems: Key for operating a vessel with ammonia as fuel is the safe operation taking the toxicity of ammonia into consideration. TGE Marine has implemented safety systems and measures into the design of the system. Risk assessments accompany the design and execution of the project at every stage. Ammonia recovery: A key element of the safe operation is the handling of potential operational and emergency releases originating from the fuel supply system and engine purge operations. For this purpose, an ammonia recovery system is applied to reduce the ammonia quantities being routed to the ammonia release mitigation system. Ammonia Release Mitigation System: The ammonia release mitigation system developed by TGE Marine, is reducing the ammonia quantity released to the atmosphere and ensures that ammonia concentrations are below health and safety limits. Primary benefits of configuration To underline the benefits of the system, these following can be listed as primary benefits of using such configuration: Fuel Efficiency: By applying an efficient ammonia fuel supply system and ammonia engine Environmental Compliance: Minimising emissions of ammonia gas into the atmosphere reduces the vessel’s environmental footprint and helps comply with stringent emissions regulations Safety and Stability: The system ensures stable operation, reducing the risk to personnel and enhancing onboard safety Operational Flexibility: This technology supports extended voyages without fuel losses and allows better management of varying fuel demands during different operational profiles New standard for sustainability in maritime transport Beyond propulsion, the Aurora Class vessels incorporate several eco-friendly features, some include 1,500 square metres of solar panels and the capability to connect to electric shore power, enabling emissions-free port operations. With these advancements, Höegh Autoliners, together with key partners like TGE Marine, is not only reducing its carbon footprint but also setting a new standard for sustainability in maritime transport, steering the industry toward a greener future.
Team Electric rose to some special challenges in its successful completion of electrical installation and refit work during Royal Caribbean’s recent high profile drydocking and ‘amplification’ of Allure of the Seas. Despite heavy weather, tight deadlines, and complex coordination across multiple contractors and workstreams, Team Electric showcased its hallmark adaptability and technical expertise to deliver the full scope of work on schedule. Three turnkey suppliers With a total workforce of 60 skilled electricians on site, Team Electric was engaged separately by three turnkey suppliers — Almaco, Makinen, and LMG — to execute electrical works across hotel areas, galleys, and public spaces on board the cruise ship. The project marked a return to familiar territory for Team Electric, which was also involved in the original construction of Allure of the Seas in Turku Shipyard in 2009. Project highlights Team Electric delivered full electrical works for the new Mason Jar restaurant and bar Achievements included the installation of 121 kilometres of electrical cabling and 4,500 metres of cable trays, across a project involving key technical areas as well as substantial hotel work. Among tasks that extended to 600 individual material line items, Team Electric fitted nearly 2,000 lights. The company’s hotel-side scope covered 61 new cabins on decks 11, 12, and 14 that were built within a prefabricated aluminium block and craned onto the ship. These new spaces included corridors, AC rooms, and associated technical infrastructure. In addition, Team Electric delivered full electrical works for the new Mason Jar restaurant and bar, as well as several refurbished galley spaces and three public areas including a Crown Lounge and a teens’ gaming zone. On the technical side, Team Electric upgraded a substantial portion of the ship’s navigation and communication systems, including the full cabling of the bridge with 9 kilometres of new wiring. A turnkey delivery of Fugro’s OceanStar system included not just cabling but also installation, commissioning, and user training, led by certified Team Electric engineers. Rising to the challenge “The weather was brutal. 30 days of torrential rain in a 40-day dry dock,” said Daniel Brown, Project Manager at Team Electric. “It had a knock-on effect on every trade, but we managed to push through and keep the program on track.” Meticulous planning and on-the-ground flexibility, Team Electric met all critical deadlines High winds frequently delayed crane operations and other key activities. Yet, through meticulous planning and on-the-ground flexibility, Team Electric met all critical deadlines. The project’s compressed dry dock period presented a further challenge. As Caj Persson, Technical Project Lead, explained: “They cut the dry dock time compared to the sister vessel Oasis of the Seas by over 10 days. That meant everything had to be done faster, with no compromise on quality.” Reliability pays Team Electric’s proven reputation in cruise ship refits was a key factor in securing the contract. “We’re well known in the industry for delivering complex and multi-faceted electrical refits, especially cabins and public areas,” said Daniel Brown. “We’re not always the cheapest, but clients know we get the job done on time and to the highest standards.” Fourth contractor with no onboard electrical team asked Team Electric to step in and support their work That reliability also paid off during the refit, when a fourth contractor with no onboard electrical team asked Team Electric to step in and support their work, sparking another relationship that is set to continue beyond this project. The working relationship with Royal Caribbean also proved crucial. “We know the fleet, we’ve been with them since these keels were laid,” said Persson. “That familiarity, and our long-standing relationship with partners like Foreship, made the coordination smoother, even under pressure.” Integrated installation Unlike newbuilds, refits present constantly shifting priorities and constraints. As Daniel Brown explained: “In public areas especially, we can’t even install light fittings until the ceiling is in. It takes extreme coordination. Every task affects the next.” From cabin design to bridge cabling, and from substations to galleys, the Allure of the Seas project exemplifies Team Electric’s full-spectrum capabilities. By blending technical know-how with practical execution, the company once again proved why it's the preferred electrical partner for cruise ship refits worldwide.
Bennett Marine, a Division of Yamaha Marine Systems Company, needed a solution that integrated solar energy generation and mechanical upgrades to optimise both sustainability and working environment outcomes. However, adding the cooling capacity needed by a large warehouse, and the employees working there, during the long Floridian summers could significantly increase the utility load on the building. Solution Bennett Marine’s management approached its outsourced service provider, ABM. Having successfully completed two lighting upgrades on site, and acting as the current janitorial service provider, ABM took Bennet Marine’s request to its Infrastructure Solutions team. ABM’s Infrastructure Solutions designed an energy-efficient HVAC system supported by a rooftop solar PV array that offset utility costs with renewable energy, leading to a net 58% reduction in total utility usage for the building. ABM also assisted in securing tax credits and energy incentives for the project, as well as a new roof for the facility with additional building envelope improvements. Finding a better solution for the client ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements" “Service experts across our company worked together to solve a need and deliver the sustainability solution Bennett Marine needed,” said Mark Hawkinson, President of ABM Technical Solutions. He adds, “ABM provides a consultative approach to help clients achieve sustainability goals, enable capital improvements, improve indoor air quality, address waste and inefficiency, and create a positive impact for communities.” In addition to the new roof, net energy offset, and improved cooling, ABM was able to assist the project in receiving an estimated $226,000 in tax credits and $224,000 in Energy Incentives through the Federal MACRS (Modified Accelerated Cost Recovery System). Benefits ABM’s Infrastructure Solutions enable businesses to invest in critical infrastructure needs and achieve sustainability, security, and resilience goals. A custom energy program drives costs out of operating budgets and redirects savings to critical needs, helping fund improvements. Highlights of the project for the Deerfield, Florida, warehouse include: Projected energy cost savings in the first year of $12,701 Replacement of ageing roof and speed roll doors to reduce energy loss Solar panel installation is capable of offsetting 66% of the building’s utility use


Round table discussion
Given the diverse stakeholders in the maritime industry, it is understandable that collaboration is a challenge. However, the interconnected ecosystem of maritime makes collaboration essential. From ship owners and operators to port authorities, from shippers to shipbuilders, from classification societies to marine service providers and others, there are vast opportunities to work together and cooperate. To gain insight, we asked our Expert Panel Roundtable: How can the maritime industry increase collaboration, and what are the benefits?
Achieving optimal return on investment (ROI) for a maritime company involves a strategic combination of operational efficiency, revenue enhancement, cost control, careful financial management, attention to sustainability and regulatory compliance, and other factors. Given all the variables in play, profitability can be elusive, but our Expert Panel Roundtable has some ideas. We asked: How can maritime companies maximise return on investment (ROI)?